tf.truncated_normal

tf.truncated_normal(shape, mean, stddev) :shape表示生成张量的维度,mean是均值,stddev是标准差。这个函数产生正太分布,均值和标准差自己设定。
                                                                         和一般的正太分布的产生随机数据比起来,这个函数产生的随机数与均值的差距不会超过两倍的标准差。
c = tf.truncated_normal(shape=[5,5], mean=0, stddev=1)

with tf.Session() as sess:
        print (sess.run(c))

 

 

 

[[-0.8753589   0.41450828  0.6864193  -1.4532009  -1.2428166 ]
 [ 1.6081111  -1.706497   -0.30391937 -1.9017276   0.5069634 ]
 [-0.44165823 -0.3769822   0.23718952  0.40979347  0.35884857]
 [-0.1833816  -0.58976877  0.70531815 -0.05325391  0.00815403]
 [-0.98096454 -0.12696017 -1.1716813  -0.02667531  1.141188  ]]

转载于:https://www.cnblogs.com/hapyygril/p/10930936.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值