逻辑回归分类python实例_逻辑回归的理解与python示例

本文介绍了逻辑回归的基本概念,包括sigmoid函数、逻辑回归的预测思想和求解过程。通过Python代码展示了如何构建逻辑回归模型,用于二分类任务,以考试成绩预测录取情况。文章详细解释了构造sigmoid函数、预测函数、损失函数、梯度求解以及梯度下降法在模型训练中的应用。
摘要由CSDN通过智能技术生成

逻辑回归(2018-11-4)

注:根据唐宇迪老师视频总结,如有侵权,请联系本人

一、逻辑回归相关概念

1.1逻辑回归解决的问题

之前一章分析了线性回归的解决方法,是通过误差的高斯分布来推演出的损失函数,但是存在数据样本是否符合分布的问题,在逻辑回归中.使用了sigmoid函数将线性问题转化为非线性的二分类任务,这样的好处是不用考虑误差分布,直接通过变换进行概率求解.

1.2 sigmoid函数

表达式:

特点:

自变量取值为任意实数,值域[0,1].

将任意的输入映射到[0,1]的区间,物理上可以解释为由值到概率的转换.

sigmiod函数

逻辑回归实现思想:

定义预测函数(将线性函数代入sigmiod函数):

其中

.这里面的

就是线性回归问题中的要求得函数.

预测函数可以看做将函数

转换到[0,1]区间上,以概率分布的模式表达结果.

所以在分类任务中,可以假设以下公式成立:

将(2),(3)式合并后得到:

1.3求解过程示例

根据(4)式求得似然函数

:

再对(5)式求对数似然,目的是将复杂度较高的乘法替换为简单的加法:

由于梯度是上升的,若求

为最大值,则可以引入

转为求梯度下降的任务.自此,就可以通过梯度下降的方法获得近似解了.

求解过程:

中对

求偏导:

下面详细对

的求导过程做解释:

对于分数类导数,求导公式为:

由于

所以对

求导的过程如下:

然而

所以,结合(7),(11),(12)式,得出下式结论:

其中,

公式化简后,就可以使用梯度下降的方法对参数进行迭代更新,最终获得一个最优的

其中

是步长,(13)式的结论是梯度下降的方向,最后求解

的最优解.

1.4python实例

数据:考试成绩,每组两门课,如果被录取则标记为1,未录取则为0.

目的:根据已有数据评估新数据是否会被录取.

思想:在已有数据上进行逻辑回归训练,获得理想的

值.

数据:

成绩1

成绩2

是否录取

34.623660

78.024693

0

30.286711

43.894998

0

35.847409

72.902198

0

60.182599

86.308552

1

79.032736

75.344376

1

简单起见,只取了代码中的五组数据,仅做示范.

step 1 构造sigmoid函数(根据(0)式)

def sigmoid(z):

return 1 / (1 + np.exp(-z))

step 2 构造预测函数(根据(1)式)

def model(X, theta):

return sigmoid(np.dot(X, theta.T))

step 3 构造损失函数(根据(1)式)

def cost(X, y, theta):

left = np.multiply(-y, np.log(model(X, theta)))

#print(left.shape)

right = np.multiply(1 - y, np.log(1 - model(X, theta)))

#print(right.shape)

return np.sum(left - right) / (len(X))

step 4 求出

的梯度方向(根据(13)式)

def gradient(X, y, theta):

grad = np.zeros(theta.shape)

error = (model(X, theta)- y).ravel()

for j in range(len(theta.ravel())):

term = np.multiply(error, X[:,j])

grad[0, j] = np.sum(term) / len(X)

return grad

step 5 运用梯度下降方法求得最优解(根据(14式))

def descent(data, theta,y,thresh,alpha):

#梯度下降求解

i = 0 # 迭代次数

costs = [cost(data, y, theta)] # 损失值

while True:

grad = gradient(data, y, theta)

theta = theta - alpha*grad # 参数更新

costs.append(cost(data, y, theta)) # 计算新的损失

i += 1

if i>thresh: break

return theta, i-1, costs, grad

step6 代入数据,进行运算

data=np.array([[1,34.623660,78.024693],[1,30.286711,43.894998],[1,35.847409,72.902198],

[1,60.182599,86.308552],[1,79.032736,75.344376]])

y=np.array([0,0,0,1,1]).reshape(-1,1)

theta=np.array([[0.5,0.5,0]])

theta, iter, costs, grad= descent(data, theta,y, 100, 0.00001)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值