互联网产品未来价值的一个判断模型

十年对于互联网来说实在是太漫长了,到时Pinterest和Instagram如果还存在的话,也必定不是现在的模样和模式,所以我们探讨这么遥远的事有点不着边际。

但如果把时间缩短到一两年的话,倒是可以来讨论:当下,具有哪些特征的产品更可能在未来获得更高的价值?对此我有一个非常简单的判断模型,我从2011年年中开始用这个模型来判断各种新出现的互联网产品,一直用得很顺手,命中率较高。

这个模型由三个特征组成:

一、碎片(Fragments)
这 个产品中的主要内容,一定是碎片化的,而且碎片是同构的。比如Twitter把“一切事物”碎片为140个字、新浪微博把“一切事物”碎片为140个字+ 一张图、Pinterest把“所有美好的事物“碎片为一张图+一小段描述+一个URL、蘑菇街把“所有美好的女性商品”碎片为一张图+一小段描述+一个 商品购买地址(包括线上和线下)。
碎片的丰富性基本上决定了这个产品最终平台化之后的基础规模,所以我们可以很容易看到新浪微博的规模百分之百的要比蘑菇街大,因为它的碎片是“一切事物”,而蘑菇街只是“所有美好的女性商品”。定语越多,规模越小。

二、组织(Organize)
为什么要碎片?因为同构的碎片很容易以各种维度被组织。
比如Twitter按时间线组织、Tumblr按Tag组织、Pinterest按Board组织、蘑菇街按商品的天然品类组织。
这种组织一定是非常自由的,任何两块碎片,都有可能被组织到一起。组织的方式越自由,信息流动的速度越快,相应的也无法获得沉淀。
所以我们看到,因为时间线是最自由的组织形式,所以新浪微博的信息流转最快,但信息很快过期;蘑菇街的组织形式受商品天然品类的边界限制,所以流转相对较慢,但是信息可以在一定程度上沉淀,挖掘出“最热”的商品来引导有“从众心理”的用户。

三、再组织(Re-Organize)
当信息碎片按某种形式组织好之后,这样的产品还会允许用户用非常自由的手段重新组织信息碎片。
比 如新浪微博的“转发”功能,就是把别人的信息碎片重组到自己的时间线中;Tumblr的“Re-Blog”功能和Pinterest的“Re-Pin”功 能,可以把别人原创或收集好的碎片方便地组织到自己的建立的体系中;蘑菇街的“喜欢”功能,可以把别人分享的好商品,极快地收藏到自己的喜欢目录中。
再组织的本质作用是将有限的内容尽可能充分地重复利用,以此提高生产率。
打个比方,在不具备再组织能力的BBS体系中,一条信息(帖子)只能被10个人消费,但同样的内容,在微博体系中就有可能平均被50个人消费,那么同样的生产成本(原创消息的人所花的时间)就带来了更大的生产成果,也即更高的生产率。
所 以,要让“再组织”发挥作用,就必须要求用户整体对内容的选择能力很强,而且产品本身有通过“积累用户利已行为得到利他结果的机制”(这点可以看我之前在 艾瑞的一个演讲)。从这个角度来说,我比较担心完全的Pinterest-Copy,在中国会受到“没有足够大的有很好审美能力的人群”的制约。

以上三个点组成了这个模型的基本框架,我把它叫做“ FOR”模型。

接下来我们用这个模型实际看一些产品,我对下面提到的每一个产品,按FOR模型的三条打分,最高5分。

Twitter:F4.5 - O4 - R3
Twitter的碎片是很彻底的,但是不支持图片还是有点过于矜持了;组织是用时间线,好处和问题上面都有说;再组织只能说及格了,Re-Tweet的功能毁誉参半吧。

新浪微博:F5 - O4 - R3.5
新浪微博对Twitter做的两个改良是非常棒的,一是消息带图、二是“转发”功能。这两点改进让这种产品形态整体达到85分,所以我们最近看到一些报告,新浪微博用户的活跃度是Twitter的数倍,从这个模型的打分上来看,很合理。

Tumblr:F3 - O3.5 - R3
轻博的碎片太大(也可以说不是碎片),这造成信息维度太多很难充分组织,再组织也很麻烦。所以总的来说,我并不是很看好轻博的发展,从最近这类产品的发展上来看,也确实不怎么好。

Pinterest:F4.5 - O4.5 - R5
神 器出现了,它离满分只差两点:以图片为主的碎片,在丰富性上不如Twitter和微博;Tag和Board的双维度组织很完善,但Tag的组织方式还是很 依赖“负责任”的用户,所以要扣一点分。Re-Pin功能非常方便,而且Re-Pin的结果是重组一个Board,当用户的普遍审美能力较好时,发挥出的 能量超大。
说实话,虽然我一早就给Pinterest打了这个平均最高分,但也还是没想到它能发展得如此疯狂。

蘑菇街:F3 - O4.5 - R3.5
来 评评自家的产品。上面说了, 我们的碎片丰富性不够,所以规模肯定不如其它几个例子产品大。但是有失必有得,我们的碎片很容易变现,另外它们天然地可以按品类组织,不需要依赖“负责 任”的用户,所以组织的分比较高。再组织方面“喜欢”功能很方便好用,但是高水平的用户不多,再组织以后的内容要供再次消费的“成品率”不高,这方面是我 们一直头痛并在努力解决的。

Instagram:F? - O? - R?
这就当练习吧,大家可以按上面的思路自己给它打分,然后给楼主一个答案:)

为什么满足FOR模型的产品有更高的概率获得较快成长?
1. 生产率,上面已经提到,FOR产品比传统的产品有更高的信息使用率,因此生产率更高。这是最本质的原因;
2. 适合移动设备,因为内容小片,可以方便地在移动设备上浏览,而且自由的组织形式和再组织动作的轻量化,都很适合移动操作。

前面都是总结,但这个总结很有可能一文不值,说不定它是类似“优秀短跑运动员都有两条腿”这样的总结。所以我再用这个模型来推论一种目前不存在的产品,以后我们可以再回过头来看看这样的产品有没出现、有没有高速增长,以此来验证这个模型是不是靠谱。

我推论的这个产品是一个旅游产品。
一、碎片。它的碎片是“一切在路上会碰到的东西”,比如一个景点、一个餐馆、一个菜色、一家加油站等等,全部碎片化并同构为“一张图片+一段描述+一个地理位置”。
当然同构后的结构可能还要再复杂一点,比如可以多张图片,但是这里作最简的处理。
二、 组织。可以按所谓“路线”或“功略”来组织所有这些碎片。比如我做了一个杭州攻略,其中就可能有这些碎片“雷峰塔、西子国宾馆、白堤、某外婆家的外婆炒 蛋……”,这些碎片可能重庆人流准备按时间排,也可以按地理排。当我到杭州旅游时,就可以用手机随时调用我的功略,指导出行,并随时为每个碎片拍照或Check In。当我因为迷路错过一个碎片,也没关系,周边的其它碎片会被推荐,随意选一个接着玩吧。
三、再组织。当我游玩回家,之前在游玩过程中的Check In行为和拍照行为,就被系统自动整理为“游记”,而另一个用户可以简单地copy我的游记,改动其中几个碎片,成为他到杭州旅游的“功略”。
如此一来,功略 > 签到 > 游记 > 功略……就成了一个循环,信息被更充分地使用。

转载于:https://www.cnblogs.com/jitai/archive/2012/08/22/2651055.html

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值