ggplot ggplot2 画图

本文介绍如何使用R语言的ggplot2包绘制折线图,并提供了具体示例,包括加载所需库、准备数据集、绘图及保存图表的过程。

 

折线图-ggplot2 
http://blog.163.com/yugao1986@126/blog/static/6922850820131161531421/
http://blog.sina.com.cn/s/blog_7cffd1400101f50v.html

《R Graphics Cookbook-By Winston Chang》

#======================
折线图
library(ggplot2)  #作图
library(gcookbook)  #案例数据
library(plyr)  #ddply()、desc()等函数
# In addition to the variables mapped to the x- and y-axes, map another
# (discrete) variable to colour or linetype Load plyr so we can use ddply()
# to create the example data set Summarize the ToothGrowth data
tg <- ddply(ToothGrowth, c("supp", "dose"), summarise, length = mean(len))
# Map supp to colour
ggplot(tg, aes(x = dose, y = length, colour = supp)) + geom_line()

 

==============

# save as :
# figure_TSS_5k_methy_level_Male_Adipose.R.pdf


library(ggplot2)  #作图
setwd("E:\\_data\\")
group<-rep("xxxx",200)
window_index<-rep(1,200)
methy<-rep(0.0001,200)

inputfile_name=paste0("level.average")  
mydata <- read.table(inputfile_name, header=FALSE)
for(ii in 1:100)
{
  group[ii]<-"MAL"
  window_index[ii]<-ii
  methy[ii]<-mydata[1,ii]
}


inputfile_name=paste0(".level.average")  
mydata <- read.table(inputfile_name, header=FALSE)
for(ii in 1:100)
{
  group[ii+100]<-"MAC"
  window_index[ii+100]<-ii
  methy[ii+100]<-mydata[1,ii]
}
   
mydata<-data.frame(group=group,window_index=window_index,methy=methy)

ggplot(mydata, aes(x = window_index, y =methy , colour = group)) + geom_line()

==============
dev.new(width=5, height=4)  #窗口大小尺寸

==============

 http://docs.ggplot2.org/current/

【源码免费下载链接】:https://renmaiwang.cn/s/gxrh8 该系统采用PHP开发,功能定位为在线视频平台,并专为电影网站搭建管理而设计。其核心优势在于具备数据采集能力,能够自动生成来自网络的影视资源链接,从而帮助用户快速构建内容库并减少手动上传工作量。在系统架构中,包含多个关键组件:配置文件(.htaccess)用于定义URL重写规则;Apache服务器配置文件(.htaccess)可能支持SEO优化、隐藏真实路径或实现目录保护等功能;IIS服务器配置文件(httpd.ini)包含了PHP配置信息、站点设置及权限管理等数据;入口文件(index.php)负责处理用户请求并展示首页内容,同时支持用户登录操作;安装脚本(install.php)引导数据库连接设置、权限验证和初始数据导入过程;后台管理界面(admin.php)允许管理员完成对网站的各种控制维护;系统介绍文档(system-intro.txt)详细描述了系统的功能特性及其适用场景;安装说明文件(install-manual.txt)提供完整的部署步骤及注意事项;合作邀请文件(invite-partners.txt)旨在吸引合作伙伴共同推广或定制该平台;HTML模板文件位于/HMPL子目录中,用于构建网站前端页面;运行时临时文件存放于/Runtime目录内,管理日志、缓存和会话数据等。这些组件协同运作,形成一个功能完善且易于管理的在线视频平台系统,在合理配置下,用户可快速搭建包含电影推荐、分类、搜索评论等功能的网站,并通过数据采集维持内容更新。对于希望进入在线视频领域的企业或个人来说,这是一份值得考虑的选择方案。
项目资源包含:可运行源码+sql文件+LW; python3.8+django+mysql5.7+html 适用人群:学习不同技术领域的小白或进阶学习者;可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 本研究将应用Python编程语言进行数据处理和深度学习模型的建立,结合MySQL数据库存储数据,以及采用Django框架构建用户友好的Web应用界面,为用户提供便捷操作体验。深度学习方法将是本研究的核心技术,利用卷积神经网络(CNN)等模型来实现对手写文字的特征抽取和识别,从而提高系统的识别准确度和稳定性。同时,引入光学字符识别(OCR)技术对文本进行处理,进一步优化手写文字的识别过程,提升整个系统的效率和可靠性。 管理员功能需求主要包括密码修改、手写字识别、手写数字识别和识别日志信息统计功能,以提供更方便、高效的管理和监控服务。 系统将采用深度学习技术实现图像文字识别功能,通过训练模型和使用预训练模型,能够准确识别上传图像中的文字信息。深度学习模型将会通过对大量样本数据的学习和训练,掌握各种字体、大小和颜色的特征,以提高识别准确性。在文字识别过程中,系统将进行错误处理和结果记录。当发生识别错误或未能识别的情况时,系统会将相关信息进行记录,并生成日志文件,便于管理员进行问题分析和修复。为了提高系统的性能和稳定性,采用异步任务队列来处理识别请求,将请求和响应分离,减少延迟时间,提升系统的并发处理能力。
【源码免费下载链接】:https://renmaiwang.cn/s/2s69k IT 行业相对于一般传统行业,发展更新速度更快,一旦停止了学习,很快就会被行业所淘汰,但是,我们要清楚:淘汰的永远只是那些初级水平的从业者,过硬技术的从业者永远都是稀缺的。因此对于学习,我们还是要踏踏实实的。 自学 Python ,也是一样,不要一开始因为头脑发热就不停地收藏各种资料网站,购买各种书籍,下载了大量的教学视频,过了几天,学习的热情开始褪去,再过几个星期,终于完成了学习课程 —— 《从入门到放弃》。所以,学习 Python 需要一步一个脚印,踏踏实实地学。 FQ 在讲 Python 如何入门之前,个人建议最好每个人都有自己的 FQ 工具,多使用 Google 搜索,多去看一下墙外的世界,多看 上的开源项目。 至于如何 FQ ,这里提供一下我用过的工具:FQ工具集 Python 学习资源集 相信很多人学习某门编程语言的时候,都会找各种学习资料。说句实话,资料太多,反而没用,根据自己的学习习惯,个人能力选择一门资源坚持学就好了。 因为每个人的需求不同,这里整理了一批 Python 比较好的学习资料: Python 博客网站资源 还有一些有趣的网站: 一个可以看执行过程的网站 Python 入门 对于入门,主要是掌握基本的语法和熟悉编程规范,因此大部分的教程基本一致的,所以还是建议选好适合自己的一个教程,坚持学下去。 在 Python 入门中,本人编写了一系列的 《草根学 Python 》 文章, 是基于 Python 3.6 写的 Python 入门系列教程,为了更好的阅读,把它整理在 GitBook 上,希望对各位入门 Python 有所帮助。 注:2018 年 0227 日,基础知识入门部分已经完成了的。因近期读者反映有些图片没法打开了(之前图片放在七牛云,用的是临时链接,最
ggplot2 是 R 语言中用于数据可视化的一个强大工具,它基于图层系统构建图形,允许用户逐步添加不同的元素(如点、线、标签等),从而创建高度定制化的图表。以下是使用 ggplot2 进行数据可视化的基本指南: ### 图形构建基础 ggplot2 的核心函数是 `ggplot()`,它接受两个主要参数:数据集 (`data`) 和美学映射 (`aes`)。`aes` 函数定义了数据中的变量如何映射到图形的视觉属性(例如 x 轴、y 轴、颜色、形状等)。 ```r library(ggplot2) # 基础散点图 ggplot(data = iris, aes(x = Sepal.Length, y = Sepal.Width)) + geom_point() ``` ### 添加几何对象 在定义了基本的数据和映射后,可以使用不同的几何对象(geoms)来表示数据,例如 `geom_point()` 表示散点图,`geom_bar()` 表示条形图,`geom_line()` 表示折线图等。 ```r # 条形图 ggplot(pg_mean, aes(x = group, y = weight)) + geom_bar(stat = "identity", fill = "lightblue", colour = "black") ``` ### 分面技术 分面(Faceting)是 ggplot2 中将图形分割为子图形的技术,它允许根据某个变量的值将数据分割成多个面板,以便于比较。常用的分面函数有 `facet_wrap()` 和 `facet_grid()`。 ```r # 使用 facet_wrap() 按照 Species 分面 ggplot(data = iris, aes(x = Sepal.Length, y = Sepal.Width)) + geom_point() + facet_wrap(~Species) ``` ### 主题设置自定义 ggplot2 提供了丰富的主题设置功能,可以通过 `theme()` 函数调整图形的非数据部分,例如坐标轴标签、背景色、字体大小等。常见的调整包括旋转 x 轴标签以避免长标签重叠。 ```r df <- data.frame( x = c("label", "a long label", "an even longer label"), y = 1:3 ) base <- ggplot(df, aes(x, y)) + geom_point() base + theme(axis.text.x = element_text(angle = -30, vjust = 1, hjust = 0)) + xlab(NULL) + ylab(NULL) ``` ### 高级功能 除了基本的图形绘制外,ggplot2 还支持许多高级功能,例如: - **统计变换**:通过 `stat_*` 系列函数对数据进行统计处理。 - **位置调整**:通过 `position_*` 系列函数控制图形元素的位置,如堆叠条形图中的 `position_dodge()`。 - **标度设置**:通过 `scale_*` 系列函数控制颜色、大小、形状等映射的具体表现形式。 - **注释标签**:通过 `labs()` 或 `annotate()` 添加标题、副标题、注释文本等。 ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值