题意:给你一张2-SAT,问你加至少几句a V b(不能用非运算)这样的语句,使得其无法全为真。
如果最开始没有左右两项都含非运算的析取表达式,则无解,因为显然你可以对每一项的不含非的那项规定为真,使得整个2-SAT成立。
由于规定了你添加的语句不能含有非运算,故添加的边一定从 非某 指向 某。
如果一开始就存在某个a,它和非a互相可达,则答案为0。
如果一开始某个非a能到达a,则答案为1;如果一开始存在某个非j,a能到达非j,并且存在某个i,i能到达非a,则答案也为1,显然可以添一条从非某指向某的边使得a和非a互相可达。
其余情况输出2。
#include<cstdio>
using namespace std;
int n,m,x[2005],y[2005];
bool can[2005*2][2005*2];
int first[2005*2],v[4005],nex[4005],e;
void AddEdge(int U,int V){
v[++e]=V;
nex[e]=first[U];
first[U]=e;
}
void dfs(int from,int U){
can[from][U]=1;
for(int i=first[U];i;i=nex[i]){
if(!can[from][v[i]]){
dfs(from,v[i]);
}
}
}
int main(){
//freopen("k.in","r",stdin);
bool flag=0;
scanf("%d%d",&n,&m);
for(int i=1;i<=m;++i){
scanf("%d%d",&x[i],&y[i]);
if(x[i]<0 && y[i]<0){
flag=1;
}
}
if(!flag){
puts("-1");
return 0;
}
for(int i=1;i<=m;++i){
if(x[i]>0 && y[i]>0){
AddEdge(x[i]+n,y[i]);
AddEdge(y[i]+n,x[i]);
}
else if(x[i]>0 && y[i]<0){
AddEdge(x[i]+n,-y[i]+n);
AddEdge(-y[i],x[i]);
}
else if(x[i]<0 && y[i]>0){
AddEdge(-x[i],y[i]);
AddEdge(y[i]+n,-x[i]+n);
}
else{
AddEdge(-x[i],-y[i]+n);
AddEdge(-y[i],-x[i]+n);
}
}
for(int i=1;i<=n*2;++i){
dfs(i,i);
}
/*for(int i=1;i<=n*2;++i){
for(int j=1;j<=n*2;++j){
printf("%d ",can[i][j]);
}
puts("");
}*/
for(int i=1;i<=n;++i){
if(can[i][i+n] && can[i+n][i]){
puts("0");
return 0;
}
}
for(int i=1;i<=n;++i){
if(can[i][i+n]){
puts("1");
return 0;
}
}
for(int i=1;i<=n;++i){
if(can[n+i][i]){
bool f1=0;
for(int j=1;j<=n;++j){
if(can[i][j+n]){
f1=1;
break;
}
}
if(f1){
bool f2=0;
for(int j=1;j<=n;++j){
if(can[j][i+n]){
f2=1;
break;
}
}
if(f2){
puts("1");
return 0;
}
}
}
}
/*for(int i=1;i<=n;++i){
for(int j=1;j<=n;++j)if(j!=i){
if(can[j][i] && can[j][i+n] && can[i][j+n] && can[i+n][j+n]){
puts("1");
return 0;
}
}
}
for(int i=1;i<=n;++i){
for(int j=1;j<=n;++j){
if(can[i][j] && can[i][j+n]){
puts("1");
return 0;
}
}
}*/
puts("2");
return 0;
}