前言
一、几何概型
定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。
两个基本特点:
无限性:可能出现的所有结果的无限性,
等可能性:每个结果的发生具有等可能性。
随机模拟方法:几何概型的应用
思维体操:
\(\hspace{2cm}\)古典概型 \(\hspace{10cm}\) 几何概型
\(a\hspace{1.5cm} \in\{1,2,3,4,5,6\}\xlongequal[有限==>无限]{一维} a\hspace{1.5cm}\in [1,6]\),用一维数轴刻画
\(a,b\hspace{0.6cm} \in\{1,2,3,4,5,6\}\xlongequal[有限==>无限]{二维} a,b\hspace{0.8cm}\in [1,6]\),用二维直角坐标系刻画
\(a,b,c \in\{1,2,3,4,5,6\}\xlongequal[有限==>无限]{三维} a,b,c\in [1,6]\),用三维空间坐标系刻画
二、概率公式
\(P(A)=\cfrac{事件A的所有结果构成的区域的测度}{实验的所有结果构成区域的测度}\)
“测度”指的是:长度、角度、面积、体积、时间等。
三、廓清认知
例1【用于廓清概念】从区间\([-5,5]\)内任取一个数,求取到1的概率。
分析:本题目的所有结果有无限个,又有等可能性,故是几何概型。 其概率是\(P(A)=\cfrac{0}{10}=0\)
所以说,不可能事件\(A\)的概率\(P(A)=0\),但是反之不成立, 比如上例中概率为0,但是却是随机事件,不是不可能事件。
- 易混题型
例2 如图在\(\Delta ABC\)中,\(\angle B=60^{\circ}\),\(\angle C=45^{\circ}\),高\(AD=\sqrt{3}\),在\(\angle BAC\) 内作射线\(AM\)交\(BC\)于点\(M\),则\(BM<1\)的概率是【】
分析:本题是角度型几何概型, \(P=\cfrac{30^{\circ}}{75^{\circ}}=\cfrac{2}{5}\)。
解后反思:本例容易错误的理解为长度性几何概型, 主要是射线\(AM\)扫过\(\angle BAC\)时,用角度度量是等可能的,用长度度量不是等可能的。用课件说明:如图动画所示,当射线\(AM\)扫过\(\angle BAC\)时,我们可以看到是等速的,也就是等可能的,但是当我们看点\(M\)在线段\(BC\)上的速度时,会发现快慢不一样,即不是等速的,也就是说不是等可能的,故此时不能用线段\(BC\)的长度来度量,而应该用角度度量。
例2-对照 如上图在\(\Delta ABC\)中,\(\angle B=60^{\circ}\),\(\angle C=45^{\circ}\),高\(AD=\sqrt{3}\),在\(BC\)上任取一点\(M\),则\(BM<1\)的概率是__________。
分析:本题目是长度型的几何概型,\(P=\cfrac{1}{1+\sqrt{3}}=\cfrac{\sqrt{3}-1}{2}\)。
解后反思:等可能性不是我们说等可能就能保证等可能的。
在\(\angle BAC\) 内作射线\(AM\)交\(BC\)于点\(M\),意味着角度型;在\(BC\)上任取一点\(M\),意味着长度型;
- 长度型和面积型的区分
比如,从区间\([0,1]\)上分别任意取数字\(x\)和\(y\),这时候理解为长度型是不合适的,原因是取到\(x\)值时会对取\(y\)值产生影响;此时我们常常将两个区间正交放置,此时由无数个点\((x,y)\)形成的区域是边长为1的正方形,故应该是面积型几何概型。
四、典例剖析
- 长度型几何概型
例1【2017高考江苏】
记函数\(f(x)=\sqrt{6+x-x^2}\)的定义域为\(D\),在区间\([4,5]\)上随机取一个数\(x\),则\(x\in D\)的概率为______________。
分析:由\(6+x-x^2\ge 0\),解得\(-2\leq x\leq 3\),由长度型几何概型可知,\(P=\cfrac{3-(-2)}{5-(-4)}=\cfrac{5}{9}\)。
例2【2015高考山东卷】
在区间\([0,2]\)上随机取一个数\(x\),则事件“\(-1\leq log_{\frac{1}{2}}(x+\cfrac{1}{2})\leq 1\)”发生的概率为【】
分析:由\(-1\leq log_{\frac{1}{2}}(x+\cfrac{1}{2})\leq 1\)解得,\(0\leq x\leq \cfrac{3}{2}\),由长度型几何概型可知,\(P=\cfrac{\cfrac{3}{2}-0}{2-0}=\cfrac{3}{4}\)。故选\(A\)。
例3【2016高考山东卷】
在区间\([-1,1]\)上随机取一个数\(k\),则事件“直线\(y=kx\)与圆\((x-5)^2+y^2=9\)相交”发生的概率为____________.
分析:圆心为\((5,0)\),半径为\(r=3\),故由直线与圆相交可得\(d=\cfrac{|5k-0|}{\sqrt{k^2+1}}<3\),解得\(-\cfrac{3}{4}<k<\cfrac{3}{4}\),
故所求概率为\(p=\cfrac{\cfrac{3}{4}-(-\cfrac{3}{4})}{1-(-1)}=\cfrac{3}{4}\)。
说明:由直线与圆相交可得,\(\Delta >0\),也可以解得\(-\cfrac{3}{4}<k<\cfrac{3}{4}\).
- 角度型几何概型
例2 如图在\(\Delta ABC\)中,\(\angle B=60^{\circ}\),\(\angle C=45^{\circ}\),高\(AD=\sqrt{3}\),在\(\angle BAC\) 内作射线\(AM\)交\(BC\)于点\(M\),则\(BM<1\)的概率是【】
分析:本题是角度型几何概型, \(P=\cfrac{30^{\circ}}{75^{\circ}}=\cfrac{2}{5}\)。
- 时间型几何概型
例2【2016高考全国卷乙】
某公司的班车在\(7:00\),\(8:00\),\(8:30\)发车,小明在\(7:50\)至\(8:30\)之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过\(10\)分钟的概率为【】
分析:小明到达的时刻用40分钟来度量,其中等车时间不超过\(10\)分钟的时间段是\(7:50\sim 8:00\)和\(8:20\sim 8:30\),故所求为时间型几何概型;
故\(P=\cfrac{10+10}{40}=\cfrac{1}{2}\),故选\(B\)。
- 面积型几何概型
例3【2016高考全国卷甲】
从区间\([0,1]\)随机抽取\(2n\)个数\(x_1\),\(x_2\),\(\cdots\),\(x_n\),\(y_1\),\(y_2\),\(\cdots\),\(y_n\),构成\(n\)个数对\((x_1,y_1)\),\((x_2,y_2)\),\(\cdots\),\((x_n,y_n)\),其中两数的平方和小于1的数对共有\(m\)个,则用随机模拟的方法得到的圆周率\(\pi\)的近似值为【】
分析:由\(n\)个数对(点的坐标)构成的是边长为1的正方形,故属于面积型几何概型,两数的平方和小于1的数对(点的坐标)在四分之一个单位圆内部,
故由随机模拟方法可知,\(\cfrac{m}{n}\approx \cfrac{\frac{1}{4}\times \pi\times 1^2}{1\times 1}=\cfrac{\pi}{4}\),即\(\pi\approx \cfrac{4m}{n}\),故选\(C\)。
- 体积型几何概型
例3在棱长为2的正方体\(ABCD-A_1B_1C_1D_1\)中,点\(O\)为底面\(ABCD\)的中心,在正方体\(ABCD\) \(-A_1B_1C_1D_1\)内随机取一点\(P\),则点\(P\)到点\(O\)的距离大于1的概率为_____________。
分析:点\(P\)的所有结果用正方体的体积来度量,当点\(P\)到点\(O\)的距离等于1时,点\(P\)在球心为\(O\)的半球面上,则当点\(P\)到点\(O\)的距离大于1时,点\(P\)在球心为\(O\)的半球外部且在正方体的内部,
故所求\(P=\cfrac{2^3-\cfrac{1}{2}\times \cfrac{4}{3}\times \pi\times 1^3}{2^3}=1-\cfrac{\pi}{12}\)。
例4【2018哈尔滨模拟】
在体积为\(V\)的三棱锥\(S-ABC\)的棱\(AB\)上任取一点\(P\),则三棱锥\(S-APC\)的体积大于\(\cfrac{V}{3}\)的概率是_____________。
分析:如图所示,三棱锥\(S-ABC\)与三棱锥\(S-APC\)的高相同,
要使三棱锥\(S-APC\)的体积大于\(\cfrac{V}{3}\),只需\(\triangle APC\)的面积大于\(\triangle ABC\)的面积的\(\cfrac{1}{3}\),
假设点\(P'\)是线段\(AB\)靠近点\(A\)的三等分点,则三棱锥\(S-APC\)的体积大于\(\cfrac{V}{3}\)发生的区域应该是线段\(P'B\),
故所求为\(P=\cfrac{P'B}{AB}=\cfrac{2}{3}\)。
解后反思:本题目由体积型几何概型入手,利用两个几何体的高度相同将体积之比转化为面积之比,再利用两个三角形的高度相同将面积之比转化为线段之比,从而转化为长度型几何概型求解。
例5【2019高三理科数学三轮模拟试题】如图,在正方形\(ABCD\)区域内,随机取一点\(P(x,y)\),则点\(P\)来自阴影部分的概率是【】
分析:由于\(S_{阴影}=\int_0^1(\sqrt{x}-x^2)\;dx=\cfrac{2}{3}\cdot x^{\frac{3}{2}}|_0^1-\cfrac{1}{3}\cdot x^3|_0^1=\cfrac{2}{3}-\cfrac{1}{3}=\cfrac{1}{3}\),又正方形的面积为1,则所求概率为\(\cfrac{1}{3}\),故选\(B\)。
引申:①\(S_{阴影}=\cfrac{1}{3}\),则其三等分正方形。
例6【2019高三理科数学三轮模拟试题】下图中的图案是我国古代建筑中的一种装饰图案,形若钱币,寓意富贵吉祥,现向圆形区域随机撒\(m(m\in N^*)\)粒芝麻,则落在阴影部分区域(阴影部分由四条四分之一圆弧围成)的芝麻的粒数为【】
提示:选\(D\)。
五、难点题型
例4已知\(P\)为圆\(C_1:x^2+y^2=9\)上任意一点, \(Q\)为圆\(C_2:x^2+y^2=25\)上任意一点,\(PQ\)的中点组成的区域为\(M\), 在\(C_2\)内任取一点,则该点落在区域\(M\)上的概率为【】
分析:由题目知,设点\(P(3\cos\theta,3\sin\theta)\),\(Q(5\cos\phi,5\sin\phi)\),\(M(x,y)\),
则\(x=\cfrac{3\cos\theta+5\cos\phi}{2},y=\cfrac{3\sin\theta+5\sin\phi}{2}\)
则\(x^2+y^2=\cfrac{17}{2}+\cfrac{15}{2}\cos(\theta-\phi)=r^2(1\leq r \leq 4)\)
所以\(P=\cfrac{16\pi-\pi}{25\pi}=\cfrac{3}{5}\),课件链接
例5若\(x\in A\),且\(\cfrac{1}{x}\in A\),则称\(A\)是“伙伴关系集合”。在集合\(M=\{-1,0,\cfrac{1}{4},\cfrac{1}{3},\cfrac{1}{2},1,2,3,4\}\)的所有非空子集中任选一个集合,则该集合是“伙伴关系集合”的概率是【】
分析:集合\(M\)的所有非空子集有\(2^9-1=511\)种,从中任选一个集合有\(C_{511}^1=511\)种,
而其中是“伙伴关系集合”,是从集合\(\{-1,1,2(\frac{1}{2}),3(\frac{1}{3}),4(\frac{1}{4})\}\)中,
任选\(1,2,3,4,5\)个构成的集合,
说明:其中\(4(\frac{1}{4})\)表示这两个值绑定为一个;
所以共有\(C_5^1+C_5^2+C_5^3+C_5^4+C_5^5=2^5-1=31\)种,故所求概率\(P=\cfrac{31}{511}\)。
例5甲、乙两人约定某天晚上\(7:00 \sim 8:00\)之间在某处会面,并约定甲早到应等乙半小时,而乙早到无需等待甲即可离去,那么两个人能会面的概率是【】
分析:如右图所示,令\(7:00\)对应0,\(8:00\)对应1,设甲乙两人到达的时刻分别为\(x,y\),则其相当于在区间\([0,1]\)上取值一样,“约定甲早到应等乙半小时”即\(y-x\leq \cfrac{1}{2}\),即\(x-y \ge -\cfrac{1}{2}\),“乙早到无需等待甲即可离去”意味着\(x-y>0\),那么两人会面应该满足条件\(-\cfrac{1}{2}\leq x-y \leq 0\),
即右图中的阴影部分,所以所求的概率为\(P=1-\cfrac{\cfrac{1}{2}\times \cfrac{1}{2}\times \cfrac{1}{2}+\cfrac{1}{2}\times 1 \times 1}{1}=\cfrac{3}{8}\).
本题目的难点有以下三个:
①到底该是用一维来刻画还是用二维来刻画;两个刻画时刻的数轴的呈现方式,到底该平行还是垂直,还是斜交。
②关于时刻的转化,\(7:00\)对应数值\(0\),\(8:00\)对应数值\(1\),则\(7:00 \sim 8:00\)任一时刻的到达对应区间[0,1]的任意取值。半小时对应数字\(\cfrac{1}{2}\).
③将甲、乙两人会面的文字条件转化为数学语言,即线性不等式组。
【解后反思】①本题目通过设置两个变量\(x\),\(y\),将已知的文字语言转化为\(x\),\(y\)所满足的不等式(数学语言),进而转化为坐标平面内的点\((x,y)\)的相关约束条件,从而把时间这个长度问题转化为平面图形的二维面积问题,进而转化为面积型几何概型。
②若题目中涉及三个相互独立的变量,则需将其转化为空间几何体的体积问题加以求解。
例6在区间\([0,2]\)上随机的取两个数\(x,y\),则\(xy\in[0,2]\)的概率是 _________.
分析:课件示意图,面积型几何概型,
故所求概率\(P=\cfrac{4-\int_1^2(2-\cfrac{2}{x})\;dx}{4}=\cfrac{4-(2x|_1^2-2lnx|_1^2)}{4}=\cfrac{1+ln2}{2}\)
六、给出方式
- 总结长度型几何概型的事件的给出方式
在区间\([-5,5]\)上随机取一个数\(k\),则事件\(A:\)“直线\(y=kx\)与圆\((x-5)^2+y^2=9\)相交”发生的概率为____________。
则①以直线和圆相交的方式给出;
②以定义域的方式给出;
③以函数单调递增的方式给出,比如使得函数\(f(x)=x^3+mx^2+3x\)在\(R\)上单调递增的概率,即求\(f'(x)\ge 0\)的解集;
④以不等式的解集形式给出,比如\(A=\{x\mid \cfrac{x-1}{2-x}>0\}\);
⑤以三角不等式的形式给出,比如\(A:sinx+\sqrt{3}cosx\leq 1\);
七、案例剖析
教学案例已知圆\(M:x^2+y^2=4\),在圆\(M\)上随机取两个点\(A、B\),使\(|AB| \leq 2\sqrt{3}\)的概率是【】
法1:如图1所示,在圆\(M\)上分别任意取两个点\(A、B\)的所有情形有无穷多种,占满了圆上的任意一点,且是等可能的,所以所有情形应该用圆的周长\(4\pi\)来度量,而\(|AB| \leq 2\sqrt{3}\),即任意取的两个点\(A、B\)应该在劣弧\(\overset{\frown}{AB}\)上,其对应的圆心角为\(120^{\circ}=\cfrac{2\pi}{3}\),弧长为\(\cfrac{4\pi}{3}\),
所以按照长度型几何概型得,所求的概率为\(P=\cfrac{\frac{4\pi}{3}}{4\pi}=\cfrac{1}{3}\)。故选\(B\)
思考1:或按照角度型几何概型得到\(P=\cfrac{120^{\circ}}{360^{\circ}}=\cfrac{1}{3}\)。
思考2:之所以可以用角度型,也可以用长度型, 是因为半径\(OA\)绕着点\(O\)旋转时每一个角度都对应其弧上的一个点,是一一对应的。
思考3:把圆剪开,就是一段线段,取点\(A、B\)相当于在两条重合的线段上分别取两个点。(待续)
法2:如图2所示,满足\(|AB| \leq 2\sqrt{3}\)的情形有劣弧 \(\overset{\frown}{AB}\)和劣弧 \(\overset{\frown}{AB'}\),所以满足的情形应该是优弧\(\overset{\frown}{BB'}\),所以\(P=\cfrac{240^{\circ}}{360^{\circ}}=\cfrac{2}{3}\)。这种解法的算理是有错误的,当点\(A、B\)在优弧\(\overset{\frown}{BB'}\)上任意取点时,是不满足条件\(|AB| \leq 2\sqrt{3}\)的。
法3:如图3所示,满足\(|AB| \leq 2\sqrt{3}\)的情形有劣弧 \(\overset{\frown}{AB}\)和劣弧\(\overset{\frown}{A'B'}\),所以满足的情形应该是两段之和,所以\(P=\cfrac{240^{\circ}}{360^{\circ}}=\cfrac{2}{3}\)。这种解法也是有错误的,当点\(A、B\)分别在两个劣弧上任意取点时,是不满足条件\(|AB| \leq 2\sqrt{3}\)的。
解后反思:这种错误的起源和我们写函数\(y=\cfrac{1}{x}\)的单调区间的错误是一样的。如我们写成单调减区间为\((-\infty,0)\cup (0,+\infty)\),那么我们用定义验证时,当自变量\(x_1, x_2\)同时取在区间\((-\infty,0)\)或区间\((0,+\infty)\)时,都满足单调递减的定义,但是若\(x_1\in (-\infty,0)\)且$x_2\in(0,+\infty) $时,验证是错误的。