概率论——2 古典概型和几何概型

本文介绍了古典概型和几何概型的定义,包括等可能事件、抛硬币、取球模型(放回与不放回)、放球模型(生日问题)、产品抽样检测中的超几何分布以及抽奖模型。同时提到了小概率原理在实际推断中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

古典概型

定义

若随机试验 E E E满足:

  1. 样本空间 S S S只含有有限个样本点, S = e 1 , e 2 , . . . , e n S={e_1,e_2,...,e_n} S=e1,e2,...,en;
  2. 每个基本事件(样本点)发生的可能性相同,都为 1 n \frac 1 n n1 n n n是样本点总数;

则称此随机试验的概率模型为等可能概型,也称为古典概型。

在古典概型中,事件 A A A发生的概率为:
P ( A ) = k n = A 包含的基本事件数 S 中基本事件的总数 P(A)=\frac k n=\frac {A包含的基本事件数}{S中基本事件的总数} P(A)=nk=S中基本事件的总数A包含的基本事件数
P ( A ) P(A) P(A)时,只需找出 k , n k,n k,n就可以,与样本点是什么无关

经典模型
抛硬币

如抛 n n n次硬币,求正面朝上 m m m次的概率

取球模型(分为放回抽样和不放回抽样)

如盒子里分别有 4 4 4个白球和 2 2 2个红球,取两次球(分为放回和不放回),求两次都是白球的概率

放回抽样和不放回抽样所计算出来的概率不同

放球模型

如将 n n n只球随机放入 N ( N ≥ n ) N(N \ge n) N(Nn)个盒子中,求每个盒子至多有一只球的概率(设盒子容量不限)
P ( A ) = A N n N n P(A)=\frac {A^n_N}{N^n} P(A)=NnANn
从放球模型可以引申出生日问题,即假设每个人的生日在一年365天中任一天等可能,均为 1 365 \frac 1 {365} 3651,随机选取 n ( n ≤ 365 ) n(n \le 365) n(n365)个人,它们生日各不相同的概率为:
P = A 365 n 36 5 n P=\frac {A^n_{365}}{365^n} P=365nA365n
那么 n n n个人中至少有两人生日相同的概率为:
1 − P 1-P 1P
n n n 50 50 50时,两人生日相同的概率就已经超过 0.9 0.9 0.9

产品抽样检测模型

设有 N N N件产品,其中有 D D D件次品,现从中任取 n n n件,求其中恰有 k ( k ≤ D ) k(k\le D) k(kD)件次品的概率是多少:
P = C D k C N − D n − k C N n P=\frac{C^k_D C^{n-k}_{N-D}}{C^n_N} P=CNnCDkCNDnk
这个分布也称为古典概型中的超几何分布

抽奖模型

袋中有 a a a只白球, b b b只红球, k k k个人依次在袋中取一只球,分别作放回抽样和不放回抽样,求第 i ( i = 1 , 2 , . . . , k ) i(i=1,2,...,k) i(i=1,2,...,k)人取到白球的概率 ( k ≤ a + b ) (k\le a+b) (ka+b)

无论是否放回,概率均为:
P = a a + b P=\frac a {a+b} P=a+ba
且该概率与取球先后次序也无关

几何概型

定义

若随机试验 E E E满足:

image-20240410202943932

与古典概型的区别是:几何概型是基本事件无限,等可能的随机试验。

实际推断原理

实际推断原理,也称为小概率原理,它基于的观察是,在一次实验或观察中,如果发生了概率极小的事件,那么我们就有理由怀疑先前的假设或条件可能不成立,或者存在某些未被考虑的因素。这个原理强调,在一次实验中,小概率事件实际上几乎不可能发生。如果这样的事件发生了,那么我们应该怀疑我们的假设或模型可能存在问题。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值