古典概型
定义
若随机试验 E E E满足:
- 样本空间 S S S只含有有限个样本点, S = e 1 , e 2 , . . . , e n S={e_1,e_2,...,e_n} S=e1,e2,...,en;
- 每个基本事件(样本点)发生的可能性相同,都为 1 n \frac 1 n n1, n n n是样本点总数;
则称此随机试验的概率模型为等可能概型,也称为古典概型。
在古典概型中,事件
A
A
A发生的概率为:
P
(
A
)
=
k
n
=
A
包含的基本事件数
S
中基本事件的总数
P(A)=\frac k n=\frac {A包含的基本事件数}{S中基本事件的总数}
P(A)=nk=S中基本事件的总数A包含的基本事件数
求
P
(
A
)
P(A)
P(A)时,只需找出
k
,
n
k,n
k,n就可以,与样本点是什么无关
经典模型
抛硬币
如抛 n n n次硬币,求正面朝上 m m m次的概率
取球模型(分为放回抽样和不放回抽样)
如盒子里分别有 4 4 4个白球和 2 2 2个红球,取两次球(分为放回和不放回),求两次都是白球的概率
放回抽样和不放回抽样所计算出来的概率不同
放球模型
如将
n
n
n只球随机放入
N
(
N
≥
n
)
N(N \ge n)
N(N≥n)个盒子中,求每个盒子至多有一只球的概率(设盒子容量不限)
P
(
A
)
=
A
N
n
N
n
P(A)=\frac {A^n_N}{N^n}
P(A)=NnANn
从放球模型可以引申出生日问题,即假设每个人的生日在一年365天中任一天等可能,均为
1
365
\frac 1 {365}
3651,随机选取
n
(
n
≤
365
)
n(n \le 365)
n(n≤365)个人,它们生日各不相同的概率为:
P
=
A
365
n
36
5
n
P=\frac {A^n_{365}}{365^n}
P=365nA365n
那么
n
n
n个人中至少有两人生日相同的概率为:
1
−
P
1-P
1−P
当
n
n
n为
50
50
50时,两人生日相同的概率就已经超过
0.9
0.9
0.9了
产品抽样检测模型
设有
N
N
N件产品,其中有
D
D
D件次品,现从中任取
n
n
n件,求其中恰有
k
(
k
≤
D
)
k(k\le D)
k(k≤D)件次品的概率是多少:
P
=
C
D
k
C
N
−
D
n
−
k
C
N
n
P=\frac{C^k_D C^{n-k}_{N-D}}{C^n_N}
P=CNnCDkCN−Dn−k
这个分布也称为古典概型中的超几何分布
抽奖模型
袋中有 a a a只白球, b b b只红球, k k k个人依次在袋中取一只球,分别作放回抽样和不放回抽样,求第 i ( i = 1 , 2 , . . . , k ) i(i=1,2,...,k) i(i=1,2,...,k)人取到白球的概率 ( k ≤ a + b ) (k\le a+b) (k≤a+b)
无论是否放回,概率均为:
P
=
a
a
+
b
P=\frac a {a+b}
P=a+ba
且该概率与取球先后次序也无关
几何概型
定义
若随机试验 E E E满足:
与古典概型的区别是:几何概型是基本事件无限,等可能的随机试验。
实际推断原理
实际推断原理,也称为小概率原理,它基于的观察是,在一次实验或观察中,如果发生了概率极小的事件,那么我们就有理由怀疑先前的假设或条件可能不成立,或者存在某些未被考虑的因素。这个原理强调,在一次实验中,小概率事件实际上几乎不可能发生。如果这样的事件发生了,那么我们应该怀疑我们的假设或模型可能存在问题。