在引用循环队列前,我们需要了解队列是如何线性实现的。
简单地讲,便是当队列为空时,front = rear = 0,每当插入元素尾指针+1,删除元素是头指针-1。但是,我们会发现一个问题,如上面的第四个图,0,1,2三个空间并没有使用。因此,为了占用该空间,我们使用了循环队列来实现。
循环队列原理图:
我们可以发现,当循环队列属于上图的d1情况时,是无法判断当前状态是队空还是队满。为了达到判断队列状态的目的,可以通过牺牲一个存储空间来实现。
如上图d2所示,
队头指针在队尾指针的下一位置时,队满。 Q.front == (Q.rear + 1) % MAXSIZE 因为队头指针可能又重新从0位置开始,而此时队尾指针是MAXSIZE - 1,所以需要求余。
当队头和队尾指针在同一位置时,队空。 Q.front == Q.rear;
以下是实现的代码:
#include
#include
#define MAXSIZE 100 //最大队列长度
#define OK 1
#define ERROR 0
typedef int ElemType;
typedef int Status;
typedef struct {
ElemType *base; //队列空间
int front; //队头指针
int rear; //队尾指针,若队尾不为空,则指向队尾元素的下一个位置
}SqQueue;
//初始化循环队列
Status initQueue(SqQueue &Q) {
Q.base = (ElemType *) malloc(MAXSIZE * sizeof(ElemType)); //申请空间
Q.front = Q.rear = 0; //队空
return OK;
}
//入队
Status enQueue(SqQueue &Q, ElemType e) {
if ((Q.rear + 1) % MAXSIZE == Q.front) return ERROR; //队满,无法添加
Q.base[Q.rear] = e; //插入元素
Q.rear = (Q.rear + 1) % MAXSIZE; //队尾指针+1
return OK;
}
//出队
Status deQueue(SqQueue &Q, ElemType &e) {
if (Q.front == Q.rear) return ERROR; //队空,无法删除
e = Q.base[Q.front];
Q.front = (Q.front + 1) % MAXSIZE; //队头指针+1
return OK;
}
//返回队列长度
Status length(SqQueue &Q) {
return (Q.rear - Q.front + MAXSIZE) % MAXSIZE;
}1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42