前言
数列是特殊的函数,则数列在考查时,完全可能考查其周期性或单调性,本博文主要探究数列的周期性。数列的周期性体现为其一为数列的项的周期性;其二为某几项的和的周期性;
一、函数周期性
1、\(f(x+4)=f(x)\)或者\(f(x+2)=f(x-2)\Longrightarrow T=4\)
2、\(f(x+a)=-f(x)\Leftrightarrow f(x+a)+f(x)=0\Longrightarrow T=2a\)
3、\(f(x+a)=b-f(x)\Leftrightarrow f(x+a)+f(x)=b\Longrightarrow T=2a\)
4、\(f(x+a)=\cfrac{k}{f(x)}(k\neq 0)\Leftrightarrow f(x+a)f(x)=k \Longrightarrow T=2a\);
5、\(f(x+2)=f(x+1)-f(x)\Longrightarrow f(x+3)=-f(x)\Longrightarrow T=6\)
6、\(f(x+6)=f(x)+f(3)\),且\(f(x)\)为偶函数,\(\Longrightarrow T=6\)(赋值法)
7、\(f(x+6)=f(x)+nf(3)(n\in N^*)\),且\(f(x)\)为偶函数,\(\Longrightarrow T=6\)(赋值法)
二、数列周期性
务必注意:数列是特殊的函数,\(a_n=f(n)\),透彻理解这句话的内涵;
- \(a_{n+2}=a_n\)或\(a_{n+2}-a_n=0\);则数列的\(T=2\);
分析:类比\(f(n+2)=f(n)\),再类比\(f(x+2)=f(x)\);
- \(a_{n+2}=-a_n\)或 \(a_{n+2}+a_n=0\);则数列的\(T=4\);
分析:类比\(f(n+2)=-f(n)\),再类比\(f(x+2)=-f(x)\);
- \(a_{n+2}=\cfrac{k}{a_n}\)或\(a_{n+2}\cdot a_n=k\);\(k\)为常数;等积数列,则数列的\(T=4\);
分析:类比\(f(n+2)=\cfrac{k}{f(n)}\),再类比\(f(x+2)=\cfrac{k}{f(x)}\),;
- \(a_{n+2}=a_{n+1}-a_n\)或\(a_{n+2}+a_n=a_{n+1}\);则数列的\(T=6\);
分析:类比\(f(n+2)=f(n+1)-f(n)\),再类比\(f(x+2)=f(x+1)-f(x)\);
\(a_{n+1}=(-1)^n(a_n+1)\);通过计算得到周期;
由\(a_n+a_{n-1}=4(n\ge 2)\),数列的周期为\(T=2\);
分析:构造\(a_{n+1}+a_n=4\),两式做差,得到\(a_{n+1}-a_{n-1}=0\),即数列的周期为\(T=2\);
三、典例剖析:
例1已知数列\(\{a_n\}\)满足\(a_{n+2}=a_{n+1}-a_n\),且\(a_1=2,a_2=3\),则\(a_{2016}\)的值为________。
法1:利用递推关系推导出数列的前有限项,周期自然就知道了。
由题目可知\(a_1=2,a_2=3,a_3=a_2-a_1=1,a_4=a_3-a_2=-2\),
\(a_5=a_4-a_3=-3,a_6=a_5-a_4=-1,a_7=a_6-a_5=2\),
即\(a_7=a_1\),周期\(T=6\),所以\(a_{2016}=a_6=-1\)
法2:由\(a_{n+2}=a_{n+1}-a_n\)可得到\(a_{n+3}=a_{n+2}-a_{n+1}\),两个式子相加,得到
\(a_{n+2}=-a_{n-1}\),用\(n+1\)替换\(n\),得到\(a_{n+3}=-a_n\),仿上可得
\(a_{n+6}=a_{[(n+3)+3]}=-a_{n+3}=-(-a_n)=a_n\),故周期\(T=6\),其余仿上完成。
例2已知数列\(\{a_n\}\)满足\(a_{n+1}a_{n-1}=a_n(n\ge 2)\),且\(a_1=1,a_2=3\),则\(a_{2016}\)的值为()
法1:利用递推关系推导出数列的前有限项,
\(a_1=1,a_2=3,a_3=\cfrac{a_2}{a_1}=3,a_4=\cfrac{a_3}{a_2}=1\),
\(a_5=\cfrac{a_4}{a_3}=\cfrac{1}{3},a_6=\cfrac{a_5}{a_4}=\cfrac{1}{3},a_7=\cfrac{a_6}{a_5}=1\),
周期\(T=6\),所以\(a_{2016}=a_6=\cfrac{1}{3}\).
法2:由\(a_{n+1}=\cfrac{a_n}{a_{n-1}}\)可得,\(a_{n+2}=\cfrac{a_{n+1}}{a_n}\),
两式相乘得到\(a_{n+2}=\cfrac{1}{a_{n-1}}\),即\(a_{n+3}=\cfrac{1}{a_n}\),
\(a_{n+6}=a_{[(n+3)+3]}=\cfrac{1}{a_{n+3}}=a_n\),
故周期\(T=6\),其余仿上完成。
例3补充迭代函数的周期性
已知函数\(f(x) = \begin{cases}2(1-x),&0\leq x \leq 1,\\ x-1, &1<x\leq 2 ,\end{cases}\)如果对任意的\(n\in N^*\),
定义\(f_n(x)=\underbrace{f\{f[f\cdots f}_{n个}(x)]\}\),那么\(f_{2016}(2)\)的值为多少?
分析:由题意,很自然想到本题是考察函数的周期,
所以计算前有限项观察周期,\(f_1(2)=1,f_2(2)=0,f_3(2)=2,f_4(2)=1,\cdots\),
所以周期\(T=3\),所以\(f_{2016}(2)=f_3(2)=2\).
例4已知函数\(f(x)\)满足\(f(1)=\cfrac{1}{2}\),且\(f(x+y)+f(x-y)=2f(x)f(y)\),求\(f(0)+f(1)+f(2)+\cdots+f(2016)\)的值.
法1:令\(x=y=0\),则有\(2f(0)=2f^2(0)\),得到\(f(0)=0或f(0)=1\);
再令\(x=1,y=0\),则有\(2f(1)=2f(1)f(0)\),得到\(f(0)=1\);
又题目已知\(f(1)=\cfrac{1}{2}\),再令\(x=1,y=1\),则有\(f(2)+f(0)=2f(1)f(1)\),得到\(f(2)=-\cfrac{1}{2}\);
再令\(x=2,y=1\),则有\(f(3)+f(1)=2f(2)f(1)\),得到\(f(3)=-1\);
再令\(x=3,y=1\),则有\(f(4)+f(2)=2f(3)f(1)\),得到\(f(4)=-\cfrac{1}{2}\);
再令\(x=4,y=1\),则有\(f(5)+f(3)=2f(4)f(1)\),得到\(f(5)=\cfrac{1}{2}\);
再令\(x=5,y=1\),则有\(f(6)+f(4)=2f(5)f(1)\),得到\(f(6)=1\);
再令\(x=6,y=1\),则有\(f(7)+f(5)=2f(6)f(1)\),得到\(f(7)=\cfrac{1}{2}\);\(\cdots\)
故周期为\(T=6\),
\(f(0)+f(1)+f(2)+\cdots+f(2016)=336\times(f(0)+f(1)+f(2)+f(3)+f(4)+f(5))=0\).
法2:令\(x=y=0\),则有\(2f(0)=2f^2(0)\),得到\(f(0)=0或f(0)=1\);
再令\(x=1,y=0\),则有\(2f(1)=2f(1)f(0)\),得到\(f(0)=1\);
又题目已知\(f(1)=\cfrac{1}{2}\)
令\(y=1\),则有\(f(x+1)+f(x-1)=2f(x)f(1)=f(x)\),即就是\(f(x+1)+f(x-1)=f(x)\),
由此得到\(f(x+2)+f(x)=f(x+1)\),两式相加得到\(f(x+2)=-f(x-1)\),
即\(f(x+3)=-f(x)\),故周期为\(T=6\),
接下来只要计算\(f(2)=-\cfrac{1}{2},f(3)=-1,f(4)=-\cfrac{1}{2},f(5)=\cfrac{1}{2}\)的值即可,
说明:若令\(x=0\),则得到\(f(y)+f(-y)=2f(0)f(y)=2f(y)\),所以\(f(-y)=f(y)\),可知函数是偶函数。
例5(全国大联考,2016第三次联考第10题)
设数列\(\{a_n\}\)前\(n\)项和为\(S_n\),\(a_{203}-a_{204}=a_{202}=1\),且\(a_n+a_{n+1}+a_{n+2}=4\),则\(S_{200}\)等于多少?
分析:本题目考查数列的单调性,由\(a_n+a_{n+1}+a_{n+2}=4\),
得到\(a_{n+1}+a_{n+2}+a_{n+3}=4\),两式相减得到,\(a_{n+3}=a_n\),故\(T=3\),
又由\(a_{202}+a_{203}+a_{204}=4\),\(a_{202}=1\),及\(a_{203}-a_{204}=1\),得到\(a_{203}=2\),
又\(a_{202}=1\),故\(a_{201}=1\),\(a_{200}=2\),\(a_{199}=1\),又\(200=66\times 3+2\),
则有\(S_{200}=66(a_1+a_2+a_3)+a_{199}+a_{200}=66\times 4+2+1=267\)。
例6【2019届高三理科数学课时作业】
已知数列\(\{a_n\}\)中,\(a_1=1\),\(a_{n+1}=(-1)^n(a_n+1)\),记\(S_n\)为其前\(n\)项和,则\(S_{2018}\)=_______。
分析:带有\((-1)^n\)的数列更多的体现出周期性,所以计算其前几项发现:
\(a_1=1\),\(a_2=-2\),\(a_3=-1\),\(a_4=0\),\(a_5=1\),\(a_6=-2\),\(\cdots\),
即周期\(T=4\),且有\(a_1+a_2+a_3+a_4=-2\),
故\(S_{2018}=504\times(-2)+a_1+a_2=-1008+1-2=-1009\).
例7【2019高三理科数学启动卷,2019陕西省二检试卷第15题】
数列\(\{a_n\}\)的通项公式是\(a_n=n(sin\cfrac{n\pi}{2}+cos\cfrac{n\pi}{2})\),其前\(n\)项的和为\(S_n\),则\(S_{2019}\)=_________。
分析:本题目考查数列的周期性和分组求和;由于\(a_1=1\),\(a_2=-2\),\(a_3=-3\),\(a_4=4\),\(a_5=5\),\(a_6=-6\),\(a_7=-7\),\(a_8=8\),\(\cdots\),
观察发现,\(a_1+a_2+a_3+a_4=a_5+a_6+a_7+a_8=\cdots=a_{2013}+a_{2014}+a_{2015}+a_{2016}=0\),且\(a_{2017}=2017\),\(a_{2018}=-2018\),\(a_{2019}=-2019\),
所以\(S_{2019}=0\times \cfrac{2016}{4}+2017-2018-2019=-2020\)。
法2:思路提示,\(a_n=n(sin\cfrac{n\pi}{2}+cos\cfrac{n\pi}{2})=n\cdot sin\cfrac{n\pi}{2}+n\cdot cos\cfrac{n\pi}{2}=b_n+c_n\),然后分析数列\(\{b_n\}\)和\(\{c_n\}\),得到\(b_{4k+1}+b_{4k+2}+b_{4k+3}+b_{4k+4}=-2\),\(c_{4k+1}+c_{4k+2}+c_{4k+3}+c_{4k+4}=2\),故\(a_{4k+1}+a_{4k+2}+a_{4k+3}+a_{4k+4}=0\),其余同上;