英语口头报告两分钟计算机,在国际学术会议上做英文口头报告,有哪些技巧和需要注意的地方?...

首先口头报告最重要的其实是你的PPT,一个好的幻灯片可以让你即使讲得烂,观众也能听懂大概。而一个好的幻灯片的要点我们认为主要有以下几个:

6d5b2fd4ef1c77e864cb165ab54f80d7.png

第一,绝对不要写一大堆长句子在幻灯片上。毕竟你不希望观众花大量时间去读句子,耽误听你的演讲。而且直接照着幻灯片念长句基本上是所有口头报告里面用户体验最差的一种形式。

第二,不要纠结于研究的细节。每一张幻灯片上最醒目的内容一定是你最希望告诉读者的内容。每张幻灯片上最好在相同的位置写上本页的要点或总结。

第三,承接第二点,整个报告要讲一个完整的故事。重点不在于你做了什么,而在于你研究的目的是什么,以及最后研究的目的是否达到了,过程是如何达到的。必要时要舍弃工作的完整度来迁就故事的完整度。

第四,图表要可读性强,该标出的图例标清楚,不要密密麻麻摆一堆东西。善用动画效果来创造更多的空间。

一般来说演讲的时候每张干货幻灯片需要大概一分钟的时间,可以根据你个人的风格细微调整。但是大致的幻灯片数量应该匹配你的报告时间(不计问答时间)。

好了,现在假设你已经准备好一套完美的幻灯片,开始准备你的演讲了。在准备演讲的时候,你的幻灯片应该就是你的演讲提纲。根据你英语水平的不同,一般有两种准备方法:

第一种是根据每张幻灯片写带bullet point的提纲。为防遗漏,提纲可以写得详细一些,但是不用写整句话。只要保证不落下重点就好。然后演讲的时候就可以顺着小卡片捋下来。出发前找个组会或者其他时间跟导师和组里同学聚一次,模拟讲一遍,掐时间不要超时太多。根据导师和同学的意见改最终稿。

第二种办法适用于英文不好的时候,那就是老老实实写逐字稿。逐字稿就不用废话太多了,老老实实写就行了。注意要口语化,用词准确的同时,尽量避免复杂长句,以把话说清楚为第一要务。然后结合幻灯片反复模拟讲。更高级的办法是对面摆个录影机模拟讲,然后看录像调整逐字稿和节奏。连练带改,有个十遍八遍基本上就把逐字稿背下来了。切忌带稿上台读,虽然别人未必在意,但是效果一定很惨烈。

最后就是问答环节了。细节性的提问总会有,尤其是当你的幻灯片主要在讲故事而没有死抠实验细节的时候。这些问题很简单,问什么答什么就好估计难度不大。没做过的就直说”这个问题提的非常好,我们的研究正在进行中,这是我们下一步要考虑的研究内容“。或者直说“我们认为这方面的研究对于这个课题并不会有很重要的启示,因为XXX"

另外一种是大方向上的质疑,这时就需要你对自己的课题有信心,毕竟任何一个提问的人对你的课题的了解都没有你深,所以当对方提出质疑的时候,大可以自信地把自己的研究会如何改变世界(大雾)的重要意义认真地怼回去。当然了,如果遇到同行大佬你不愿意得罪的话也可以唯唯诺诺的回一句您教训的是,我们以后会仔细考虑XXX。

还有就是总体上来说,对于问答环节,我的建议是:提前准备好你的问题和你的答案。无论对方问什么问题,只要跟你预想的问题相关,你都给出提前准备好的相同的答案。如果对方提出你没准备过的问题,那么你要对他说“你提的这个问题并不是研究的关键,研究的关键在于——"然后你把提前准备好的问题自己讲出来,并说出你准备好的答案。

04673a2b4a2f2f9569d8ecf8c588ac97.png

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值