在粘贴转发的文章前啰嗦两句:在任何一个细分领域内想成为大牛,都是非常困难的,10000小时定律虽然不是绝对的,但是从另一个侧面反应出,想要成功必然要在业余时间多花点功夫,而任何一个人对于任意一个行业的精通无一不是建立在长时间的观察思考上的,所以少玩儿两把Dota,多沉下心来学习,则必然有所获,要相信自己的大脑。
初级
开始接触hadoop,最好还是有语言工程等相关的基础。如果工程能力、思维能力比较强,其实学习起来很快的。
- 自己直接写一些mapreduce、spark相关的代码去解决一些业务问题
- 熟悉hadoop的基本理论知识
- 多看看官方的文档
- 知晓大体的hadoop体系架构,每个角色能解决的问题
- 最好能体系的看下《Hadoop权威指南》
中级
这个阶段,基本就是想进一步了解hadoop本身的
- 前提开发能力较强,比如:java能力
- 熟悉ETL/流失计算/图计算/机器学习各种原理
- 看一些社区hadoop的代码,出现问题能直接看源码解决
- 能去优化hadoop的一些性能问题,知晓大体性能的瓶颈点
- 可以改造内核,或者参与社区开发
- 有较多的大数据的项目经验,做过复杂项目
- 可以看下更多的1-2个计算引擎
高级
在这个阶段,一般书籍就没有太多的用处,一般需要看看paper
- 修改各种引擎的核心代码,这些包括:hadoop/spark/flink/strom/hive/hbase/kafka/等
- 学习力强,可以迅速看清楚各种框架
- 有较强的分布式理论知识
- 能触类旁通,创新出一套新的大数据引擎,比如:spark
- 能前瞻性预测未来引擎发展方向
建议
- 最好的学习方式是:动手,动手写code
- 多参加技术会议,融入hadoop圈子,如:hadoop submit,spark submit,有时候一些城市会有一些交流会
- 关注Cloudera、databricks、阿里云E_MapReduce 等博客
- 多关注一些群,可以加笔者的微信(fengshenwukong),笔者拉下
- 多关注一些圈子内的微博号或者同学,可以从笔者的微博关注里面找(笔者的微博号:阿里封神)
- 关注你关注的软件的邮件列表
- 多写写博客,分享自己的心得,把知识沉淀下来
- 多关注社区的发展
推荐的资料
hadoop生态资料太多,google一下一大把,笔者这里列出的都是基本的:
首先推荐《hadoop权威指南》,基本会讲述hadoop生态的各个组件,是不错的书籍。
再次就是各个软件的官方文档,例如:hadoop、spark、kafka、
Hadoop基础及ETL
主要包括Hadoop Yarn、HDFS、Hadoop MapReudce、Hive、Spark SQL等
- 书籍:《Spark大数据处理技术》
- 书籍:《Hive编程指南》
- 书籍:《Hadoop技术内幕:深入解析YARN架构设计与实现原理》
- 书籍:《Hadoop技术内幕:深入解析Hadoop Common和HDFS架构设计与实现原理》
- 书籍:《Hadoop技术内幕:深入解析MapReduce架构设计与实现原理》
- 论文:Bigtable: A Distributed Storage System for Structured Data
- 论文:MapReduce: Simplified Data Processing on Large Clusters
- 论文:The Google File System
- 论文:Spark: Cluster Computing with Working Sets
- 论文:Spark SQL: Relational Data Processing in Spark
- 博客:Spark源码分析
流式实时处理技术
主要包括Jstorm、Spark Streaming
大数据KV、MPP领域
主要包括的是Hbase、Impala
- 书籍: 《HBase权威指南》
- 官方文档:Apache Impala