Pandas groupby apply agg 区别 运行自定义函数

agg 方法将一个函数使用在一个数列上,然后返回一个标量的值。也就是说agg每次传入的是一列数据,对其聚合后返回标量。 
对一列使用三个函数: 
这里写图片描述
对不同列使用不同函数 
这里写图片描述
apply 是一个更一般化的方法:将一个数据分拆-应用-汇总。而apply会将当前分组后的数据一起传入,可以返回多维数据。 
这里写图片描述
图片来自 
实例: 
1、数据如下:

lawsuit2[['EID','LAWAMOUNT','LAWDATE']]
  • 1

这里写图片描述 
2、groupby后应用apply传入函数数据如下:

lawsuit2[['EID','LAWAMOUNT','LAWDATE']].groupby(['EID']).apply(lambda df:print(df))
  • 1

这里写图片描述
3、如果使用agg,对于两列可以处理,但对于上面的三列,打印数据如下:

lawsuit2[['EID','LAWAMOUNT','LAWDATE']].groupby(['EID']).agg(lambda df:print(df))
  • 1

这里写图片描述
可以看到agg传入的只有一列数据,如果我们使用df加列下表强行取值也能取到,但是有时会出现各种keyError问题。 
4、完整代码: 
判断最近一次日期的花费是否是所有的花费中最大花费。

def handle(df):
#     print(df)
# 找最大日期
    maxdate = df['LAWDATE'].max()
# 找最大费用
    left = df[ df['LAWDATE']==maxdate ]['LAWAMOUNT'].max()
# 取ID
    EID = df['EID'].values[0]
#     print(EID)
# 从已存在的表中根据EID找到最大费用
    right = LAW_AMOUNT_MAX.loc[EID,'LAW_AMOUNT_MAX']
# 判断费用是否相等
    if left==right:
        return 1
    else:
        return 0

LAW_AMOUNT_MAX_IS_LAST = lawsuit2[['EID','LAWAMOUNT','LAWDATE']].groupby(['EID']).apply(handle)

转自:http://blog.csdn.net/qq_16234613/article/details/78245325
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值