Pandas数据分析⑤——数据分组与函数使用(Groupby/Agg/Apply/mean/sum/count)

本文介绍了Pandas中的数据分组操作,包括Groupby的基本使用、与Agg的结合、Apply的差异以及与pd.cut/pd.qcut的配合。通过实例展示了如何对数据进行分组和应用各种聚合函数,适用于数据分析师进行数据处理和分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据分析目录(文末有超级彩蛋!):
一、Excel系列——四大常用函数及十大高级图表
二、SQL系列——性能优化/多表关联/窗口分析函数等
三、统计学系列——概率论/置信区间/相关/抽样等
四、Pandas系列——数据读取/清洗/规整/分析实战等
五、Python做图系列——箱型图/散点图/回归图/热力图等
六、业务积累系列——流水预测/精细化运营/排序算法等
七、Kmeans系列——原理/评价指标/RFM实战等
八、决策树系列——算法原理/调参/python实现/项目实战
九、贝叶斯系列——算法原理/3种模型/文本分类实战
十、神经网络系列——BP算法原理/最小二乘法/项目实战

之前写了一篇SQL聚合函数的文章,讲述了groupby及与聚合函数使用。

在Pandas数据分析中,Groupby也是使用频率非常高的方法,两者其实非常相似,看完本篇你就知道怎么用啦!(文末有大礼赠送

一、Groupby基本使用

① groupby可以通过传入需要分组的参数实现对数据的分组,参数可以是单列,也可以是多列,分组后可以对单列进行函数处理,也可以对多列进行函数处理

(两种写法:先筛选列再groupby或者先groupby再筛选列,结果都一样,只是如果先聚合,聚合列可以只写列名,不加变量名,因为没有筛选某列前,可以直接搜索到列&#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值