基于matlab的适应度曲线的代码,人工蜂群算法的适应度曲线该如何得到?

% 人工蜂群算法

clc,clear,close all

warning off

feature jit off

tic

% 算法参数

NP=20;                                   % 蜂群大小

FoodNumber=NP/2;                 % 蜂群食物源数量,也就是产生 解 的个数

limit=100;       % 经过“limit”次采蜜蜂和观察蜂的循环搜索之后,不能够被改进,那么该位置将被放弃

maxCycle=500;                            % 最大迭代循环

%/* Problem specific variables*/

objfun='Sphere';                     % 待优化函数

D=100;                               % 未知数为100个

ub=ones(1,D)*100;                    % 未知量取值下边界

lb=ones(1,D)*(-100);                 % 未知量取值上边界

runtime=1;                           % 算法运行次数,一般设置1即可

GlobalMins=zeros(1,runtime);   % 适应度最小值初始化

for r=1:runtime

% 初始化变量值

Range = repmat((ub-lb),[FoodNumber 1]);       % 最大值

Lower = repmat(lb, [FoodNumber 1]);           % 最小值

Foods = rand(FoodNumber,D) .* Range + Lower;  % 初始化个体

ObjVal=feval(objfun,Foods);                                       % 目标函数值

Fitness=calculateFitness(ObjVal);                                 % 适应度值,取其导数,为最小值

% 设定拖尾矩阵,初始化

trial=zeros(1,FoodNumber);

% 找到最好的食物源

BestInd=find(ObjVal==min(ObjVal));

BestInd=BestInd(end);

GlobalMin=ObjVal(BestInd);                             % 函数值最小

GlobalParams=Foods(BestInd,:);                         % 相应的食物源个体

iter=1;

while ((iter <= maxCycle)),  % 迭代开始

% 采蜜蜂

for i=1:(FoodNumber)

% 参数随机可变

Param2Change=fix(rand*D)+1;

% 随机选择相连个体

neighbour=fix(rand*(FoodNumber))+1;

% 随机选择的个体不等于i

while(neighbour==i)

neighbour=fix(rand*(FoodNumber))+1;

end;

sol=Foods(i,:);  % 个体选择

%  /*v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) */

sol(Param2Change)=Foods(i,Param2Change)+(Foods(i,Param2Change)-Foods(neighbour,Param2Change))*(rand-0.5)*2;

% 个体取值范围约束

ind=find(sol

sol(ind)=lb(ind);

ind=find(sol>ub);                         % 最大值约束

sol(ind)=ub(ind);

% 估计新的目标函数值和适应度值

ObjValSol=feval(objfun,sol);

FitnessSol=calculateFitness(ObjValSol);

% 更新最优个体值

if (FitnessSol>Fitness(i))                 % 如果新产生的个体值适应度值越大,则表明函数值越小,则个体最优

Foods(i,:)=sol;

Fitness(i)=FitnessSol;

ObjVal(i)=ObjValSol;

trial(i)=0;

else

trial(i)=trial(i)+1; % /*if the solution i can not be improved, increase its trial counter*/

end;

end;

% 观察蜂

% 计算概率

% 观察蜂根据与蜜源相关的概率值选择蜜源,概率值计算公式

% prob(i)=a*fitness(i)/max(fitness)+b*/

prob=(0.9.*Fitness./max(Fitness))+0.1;

i=1;

t=0;

while(t

if(rand

t=t+1;

% 继续随机选择个体

Param2Change=fix(rand*D)+1;

% 随机选择相连个体

neighbour=fix(rand*(FoodNumber))+1;

% 随机选择的个体不等于i

while(neighbour==i)

neighbour=fix(rand*(FoodNumber))+1;

end;

sol=Foods(i,:);                                  % 个体选择

%  /*v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) */

sol(Param2Change)=Foods(i,Param2Change)+(Foods(i,Param2Change)-Foods(neighbour,Param2Change))*(rand-0.5)*2;

% 个体取值范围约束

ind=find(sol

sol(ind)=lb(ind);

ind=find(sol>ub);                                 % 最大值约束

sol(ind)=ub(ind);

% 估计新的目标函数值和适应度值

ObjValSol=feval(objfun,sol);

FitnessSol=calculateFitness(ObjValSol);

% 更新最优个体值

if (FitnessSol>Fitness(i))                 %如果新产生的个体值适应度值越大,则表明函数值越小,则个体最优

Foods(i,:)=sol;

Fitness(i)=FitnessSol;

ObjVal(i)=ObjValSol;

trial(i)=0;

else

trial(i)=trial(i)+1; % /*if the solution i can not be improved, increase its trial counter*/

end;

end;

i=i+1;

if (i==(FoodNumber)+1)

i=1;

end;

end;

% 记录最好的目标函数值

ind=find(ObjVal==min(ObjVal));

ind=ind(end);

if (ObjVal(ind)

GlobalMin=ObjVal(ind);                      % 最优目标函数值

GlobalParams=Foods(ind,:);                  % 最优个体

end;

% 侦察蜂

% 如果某一次循环拖尾次数大于设定limit,则重新更新个体,重新计算

ind=find(trial==max(trial));

ind=ind(end);

if (trial(ind)>limit)

Bas(ind)=0;

sol=(ub-lb).*rand(1,D)+lb;

ObjValSol=feval(objfun,sol);

FitnessSol=calculateFitness(ObjValSol);

Foods(ind,:)=sol;

Fitness(ind)=FitnessSol;

ObjVal(ind)=ObjValSol;

end;

fprintf('iter=%d ObjVal=%g\n',iter,GlobalMin);

iter=iter+1;

end % End of ABC

GlobalMins(r)=GlobalMin;

end; % end of runs

toc

% save all

disp('最优解为:')

GlobalParams

disp('最优目标函数值为:')

GlobalMin

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值