模型选择,欠拟合,过拟合

  • 训练误差:在训练集上的表现
  • 泛化误差:在任意一个数据样本上表现的误差
  • 计算误差:损失函数
  • 在机器学习中,假设每个样本都是独立同分布与整体的,于是它训练误差期望 = 泛化误差
  • 一般情况下:由训练数据集学到的训练参数 使得 模型在训练数据集上的表现优于或等于 测试数据集上的表现
  • 模型选择:可以选择完全不同的网络模型,也可以是不同的超参数(例如:多层感知机的隐藏层个数等等)
  • 验证数据集:在实际应用中,验证数据集与测试数据集界限模糊
  • K折交叉验证:训练数据太少了,于是将所有样本分为k份,做k次模型训练,每次选择不同的一份做测试集,其他做训练集,loss取平均
  • 欠拟合:模型无法得到较低的训练误差
  • 过拟合:训练误差远低于它在测试数据上的误差
  • 欠拟合,过拟合的原因很多,其中最重要的是:模型复杂度,训练集大小(当样本数过少,过拟合更容易发生)

 

转载于:https://www.cnblogs.com/TreeDream/p/10022016.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值