为什么样本方差的分母是 n-1

为什么样本方差的分母是 n-1

按照方差的定义,直观上我们可能会这样子计算方差:

但是,在所有的书中,都将方差的计算公式定义为:

为什么是除以n-1而不是n呢?这就是这里要讨论的问题。

1、除n-1会带来什么问题

或许答案你已经知道了:为了保证方差估计的无偏性,我们通常要除以n-1,而不是n.如果是除以n,会使得估计的方差比实际方差要小。这是为什么呢?我们下面就来讨论讨论

1.1 现实生活中面临的问题

加入我们要调查全国人民的收入水平,并且已经知道了全国人民的平均收入水平问\mu(别问我为什么知道的,上帝告诉我的)。这时我们对总体进行抽样,记每个样本问X_{i},根据的定义,我们可以得到全国人民收入水平的方差为:

\mathbb{E}\Big[\frac{1}{n} \sum_{i=1}^n\Big(X_i -\mu\Big)^2 \Big]=\sigma^2

但问题是,现实生活中,\mu是无法确定的(你不可能调查到所有人的收入水平)。这时候,我们就会用样本的均值\bar{X}去代替\mu。但是!

如果直接使用\frac{1}{n} \sum_{i=1}^n\Big(X_i -\bar{X}\Big)^2作为方差的估计,那么计算出来的结果会低于实际的方差!

这是因为:

\begin{eqnarray}\frac{1}{n}\sum_{i=1}^n(X_i-\bar{X})^2 &=&\frac{1}{n}\sum_{i=1}^n\Big[(X_i-\mu) + (\mu -\bar{X}) \Big]^2\\&=&\frac{1}{n}\sum_{i=1}^n(X_i-\mu)^2 +\frac{2}{n}\sum_{i=1}^n(X_i-\mu)(\mu -\bar{X})+\frac{1}{n}\sum_{i=1}^n(\mu -\bar{X})^2 \\&=&\frac{1}{n}\sum_{i=1}^n(X_i-\mu)^2 +2(\bar{X}-\mu)(\mu -\bar{X})+(\mu -\bar{X})^2 \\&=&\frac{1}{n}\sum_{i=1}^n(X_i-\mu)^2 -(\mu -\bar{X})^2 \end{eqnarray}

换言之,除非正好\bar{X}=\mu,否则我们一定有

\frac{1}{n}\sum_{i=1}^n(X_i-\bar{X})^2 <\frac{1}{n}\sum_{i=1}^n(X_i-\mu)^2

而不等式右边的那位才是的对方差的“正确”估计! 这个不等式说明了,为什么直接使用\frac{1}{n} \sum_{i=1}^n\Big(X_i -\bar{X}\Big)^2会导致对方差的低估。

我们通过一个gif来看一下,\bar{X}\mu的实际偏差越大,对估计的影响就越大!

1.2 如何解决这个问题

那么,在不知道随机变量真实数学期望的前提下,如何“正确”的估计方差呢?答案是把上式中的分母n,通过这种方法把原来的偏小的估计“放大”一点点,我们就能获得对方差的正确估计了:

\mathbb{E}\Big[\frac{1}{n-1} \sum_{i=1}^n\Big(X_i -\bar{X}\Big)^2\Big]=\mathbb{E}\Big[\frac{1}{n} \sum_{i=1}^n\Big(X_i -\mu\Big)^2 \Big]=\sigma^2.

至于为什么分母是n-1而不是n-2或者别的什么数呢?这就是我们接下来要证明的事情。

2、调整分母 得到无偏估计

S^{2}为我们估计的方差,则

{\displaystyle {\begin{aligned} \operatorname {E} [S^{2}]& =\operatorname {E} \left[{\frac{1}{n}}\sum _{i=1}^{n}{\big (}X_{i}-{\overline{X}}{\big )}^{2}\right]=\operatorname {E} {\bigg[}{\frac{1}{n}}\sum _{i=1}^{n}{\bigg(}(X_{i}-\mu )-({\overline{X}}-\mu ){\bigg)}^{2}{\bigg]}\\[8pt]& =\operatorname {E} {\bigg[}{\frac{1}{n}}\sum _{i=1}^{n}{\bigg(}(X_{i}-\mu )^{2}-2({\overline{X}}-\mu )(X_{i}-\mu )+({\overline{X}}-\mu )^{2}{\bigg)}{\bigg]}\\[8pt]& =\operatorname {E} {\bigg[}{\frac{1}{n}}\sum _{i=1}^{n}(X_{i}-\mu )^{2}-{\frac{2}{n}}({\overline{X}}-\mu )\sum _{i=1}^{n}(X_{i}-\mu )+{\frac{1}{n}}({\overline{X}}-\mu )^{2}\sum _{i=1}^{n}1{\bigg]}\\[8pt]& =\operatorname {E} {\bigg[}{\frac{1}{n}}\sum _{i=1}^{n}(X_{i}-\mu )^{2}-{\frac{2}{n}}({\overline{X}}-\mu )\sum _{i=1}^{n}(X_{i}-\mu )+{\frac{1}{n}}({\overline{X}}-\mu )^{2}\cdot n{\bigg]}\\[8pt]& =\operatorname {E} {\bigg[}{\frac{1}{n}}\sum _{i=1}^{n}(X_{i}-\mu )^{2}-{\frac{2}{n}}({\overline{X}}-\mu )\sum _{i=1}^{n}(X_{i}-\mu )+({\overline{X}}-\mu )^{2}{\bigg]}\\[8pt]\end{aligned}}}

其中:

{\displaystyle {\begin{aligned} {\overline{X}}-\mu ={\frac{1}{n}}\sum _{i=1}^{n}X_{i}-\mu ={\frac{1}{n}}\sum _{i=1}^{n}X_{i}-{\frac{1}{n}}\sum _{i=1}^{n}\mu \ ={\frac{1}{n}}\sum _{i=1}^{n}(X_{i}-\mu ).\\[8pt]\end{aligned}}}

所以我们接着算下去:

{\displaystyle {\begin{aligned} \operatorname {E} [S^{2}]& =\operatorname {E} {\bigg[}{\frac{1}{n}}\sum _{i=1}^{n}(X_{i}-\mu )^{2}-{\frac{2}{n}}({\overline{X}}-\mu )\sum _{i=1}^{n}(X_{i}-\mu )+({\overline{X}}-\mu )^{2}{\bigg]}\\[8pt]& =\operatorname {E} {\bigg[}{\frac{1}{n}}\sum _{i=1}^{n}(X_{i}-\mu )^{2}-{\frac{2}{n}}({\overline{X}}-\mu )\cdot n\cdot ({\overline{X}}-\mu )+({\overline{X}}-\mu )^{2}{\bigg]}\\[8pt]& =\operatorname {E} {\bigg[}{\frac{1}{n}}\sum _{i=1}^{n}(X_{i}-\mu )^{2}-2({\overline{X}}-\mu )^{2}+({\overline{X}}-\mu )^{2}{\bigg]}\\[8pt]& =\operatorname {E} {\bigg[}{\frac{1}{n}}\sum _{i=1}^{n}(X_{i}-\mu )^{2}-({\overline{X}}-\mu )^{2}{\bigg]}\\[8pt]& =\operatorname {E} {\bigg[}{\frac{1}{n}}\sum _{i=1}^{n}(X_{i}-\mu )^{2}{\bigg]}-\operatorname {E} {\bigg[}({\overline{X}}-\mu )^{2}{\bigg]}\\[8pt]& =\sigma ^{2}-\operatorname {E} \left[({\overline{X}}-\mu )^{2}\right]\end{aligned}}}

其中(证明见:这里):

\operatorname {E} \left[({\overline{X}}-\mu )^{2}\right]=\frac{1}{n}\sigma^{2}

所以:

E[\frac{1}{n}\sum _{i=1}^{n}(X_ i-\overline{X})^2]=\sigma ^{2}-{\frac{1}{n}}\sigma ^{2}=\frac{n-1}{n}\sigma ^{2}

也就是说,低估了 \displaystyle {\frac{1}{n}}\sigma ^{2},进行一下调整:

\frac{n}{n-1}E[\frac{1}{n}\sum _{i=1}^{n}(X_ i-\overline{X})^2]=E[\frac{1}{n-1}\sum _{i=1}^{n}(X_ i-\overline{X})^2]=\sigma ^{2}

因此使用下面这个式子进行估计,得到的就是无偏估计:

S^2=\frac{1}{n-1}\sum _{i=1}^{n}(X_ i-\overline{X})^2

转载于:https://juejin.im/post/5b9a0313e51d453eb93d3511

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值