题目如下:
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
思路:
因为只能往右或往下走,所以可以初始化当res[m][0], res[0][n]这些边界情况
然后,每一步结果为当前值+min(上边一步,左边一步),即res[i][j] = grid[i][j] + min(res[i-1][j], res[i][j-1])
本体代码:
/** * Created by yuanxu on 17/4/13. */ public class DP64 { public static int minPathSum(int[][] grid) { int m = grid.length; int n = grid[0].length; int res[][] = new int[m][n]; // boundary conditions res[0][0] = grid[0][0]; for (int i=1; i<m; i++) { res[i][0] = grid[i][0] + res[i-1][0]; } for (int j=1; j<n; j++) { res[0][j] = grid[0][j] + res[0][j-1]; } // dp for (int i=1; i<m; i++) { for (int j=1; j<n; j++) { res[i][j] = grid[i][j] + (res[i-1][j] < res[i][j-1] ? res[i-1][j] : res[i][j-1]); } } return res[m-1][n-1]; } public static void main(String[] args) { int grid[][] = {{1,2},{1,1}}; System.out.println(minPathSum(grid)); } }
网上的解答有空间复杂度为0的:
public class Solution { public int minPathSum(int[][] grid) { int m = grid.length;// row int n = grid[0].length; // column for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (i == 0 && j != 0) { grid[i][j] = grid[i][j] + grid[i][j - 1]; } else if (i != 0 && j == 0) { grid[i][j] = grid[i][j] + grid[i - 1][j]; } else if (i == 0 && j == 0) { grid[i][j] = grid[i][j]; } else { grid[i][j] = Math.min(grid[i][j - 1], grid[i - 1][j]) + grid[i][j]; } } } return grid[m - 1][n - 1]; } }
ref: https://discuss.leetcode.com/topic/5459/my-java-solution-using-dp-and-no-extra-space