个人作业3——个人总结(Alpha阶段)

本文提供了一系列软件开发过程中的最佳实践建议,包括保持高标准、主动解决问题、持续学习、避免代码重复等方面,旨在帮助开发者提高工作效率及产品质量。

一、问题

1.p172 功能的定位和优先级一节中说自己的产品要有一个差异化的焦点作为杀手功能,并且举了一个卖包子的例子:别人有肉包、菜包、小笼包,而我们有蟹黄小笼包。我想问,可不可以是把别人已有的功能做得更好更符合用户需求来作为杀手功能,就比如说我们将肉包、菜包做得馅更足皮更薄?

2.p199 

如果一个PM不是由一个好的程序员转型而来的话,那么他能否很好的理解程序员所设计出的东西?

3.p120 冲刺阶段一节说有任何需求的改变都要等待冲刺结束后再讨论?这句话我比较困惑,在开发过程中,如果客户需求有大的改动,而我们又按照原来的需求冲刺,那是否会造成时间和精力上的浪费?

4.P157第八章需求分析,如果我们进行需求分析后,发现有很多用户需求的功能,而我们开发时间又不够充裕,那么我们是应该每个都做后期再来完善还是应该尽力做好一两个后期再来增加功能?

5.换人机制:诚然,在一个团队中,人员的更迭是不可避免的,那么,团队中加入一个新成员时,我们应该一起协助他尽快上手他应该接手的部分,还是应该继续完成我们的模块让他自己去熟悉?

 

二、自我评价表

[b]1.保持高标准,不要受制于破窗理论(broken windows theory)[i]
当你看到不靠谱的设计、糟糕的代码、过时的文档和测试用例的时候,不要想 “既然别人的代码已经这样了,我的代码也可以随便一点啦。”

    a) 从来没听说过;   b) 我就是这样随便过来的;  c) 如果有明确要求,我可以做好。  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

[b]2. 主动解决问题。当看到不靠谱的设计,糟糕的代码的时候,不要想“可能别人会来管这个事情” ,或者“我下个月发一个邮件让大家讨论一下”。要主动地把问题给解决了[ii]

   a) 不懂啥是靠谱的设计;   b) 随便应付一下即可;  c) 如果有明确要求,我可以做好。  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

 

[c]3. 经常给自己充电,身体训练是运动员生活的一部分,学习是软件工程师职业的伴侣。每半年就要了解和学习一些新的相关技术。通过定期分享(面对面的分享,写技术博客等)来确保自己真正掌握了新技术。

   a) 从来不看书;   b) 看了就忘;  c) 有时分享。  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

 

[c]4. DRY (Don't Repeat Yourself)——别重复。在一个系统中,每一个知识点都应该有一个无异议的、正规的表现形式。

   a) 从来没听说过;   b) 听说过,但是认为意思不大;  c) 这要讲场合。  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

 

[c]5. 消除不相关模块之间的影响,在设计模块的时候,要让它们目标明确并单一,能独立存在,没有不明确的外部依赖。

   a) 从来没听说过;   b) 出了问题再说吧;  c) 想做,但是不知道怎么衡量效果。  d) 能够在多种语言和架构中做到     e) 不但主动做, 还会影响同事一起做好

 

[b]6. 通过快速原型来学习,快速原型的目的是学习,它的价值不在于代码,而在于你通过快速原型学到了什么。

   a) 从来没听说过;   b) 把原型直接用于产品,不然就浪费了;  c) 不用原型,一直在产品中直接改。  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

 

[d]7. 设计要接近问题领域,在设计的时候,要接近你目标用户的语言和环境。

   a) 从来没听说过;   b) 按我的想法设计,用户以后会适应的;  c) 大概同意,但是怎么接近用户呢?  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

 

[d]8. 估计任务所花费的时间,避免意外。在开始工作的时候,要做出时间和潜在影响的估计,并通告相关人士,避免最后关头意外发生。工作中要告知可能的时间变化,事后要总结。

   a) 做完了,就知道花费了,不用事先估计;   b) 大概估一下,不必在意时间   c) 如果有明确要求,我可以做好。  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

 

[d]9. 图形界面的工具有它的长处,但是不要忘了命令行工具也可以发挥很高的效率,特别是可以用脚本构建各种组合命令的时候。

   a) 一直用鼠标和GUI;   b) 到时候问牛人;  c) 正在学习命令行工具。  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

 

[a]10. 有很多代码编辑器,请把其中一个用得非常熟练。让编辑器可以实现自己的定制,可以用脚本驱动,用起来得心应手。

   a) 只用老师教的一个;   b) 随意;  c) 没有任何定制。  d) 会定制,并且分享给其他人     e) 还会学习和使用各种编辑器的扩展。

 

[b]11. 理解常用的设计模式,并知道择机而用。设计模式不错,更重要的是知道它的目的是什么,什么时候用,什么时候不用。

   a) 从来没听说过;   b) 模式没用;  c) 每写100行程序,我就尽量用一个模式。  d)有实际使用的经验     e) 能用具体代码说明模式的利弊

 

[b]12. 代码版本管理工具是你代码的保障,重要的代码一定要有代码版本管理。

   a) 从来没听说过;   b) 用QQ,u盘即可;  c) 领导要求才用。  d) 经常用     e) 不但主动做, 还会影响同事一起做好

 

[b]13. 在debug的时候,不要惊慌,想想导致问题的原因可能在哪里。一步一步地找到原因。要在实践中运用工具,善于分析日志(log),从中找到bug。同时,在自己的代码里面加 log.

   a) 从来没听说过;   b) 只会printf;  c) 加log 太麻烦,我的代码不会有bug 的。  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

 

[c]14. 重要的接口要用形式化的“合同”来规定。用文档和断言、自动化测试等工具来保证代码的确按照合同来做事,不多也不少。使用断言 (assertion) 或者其他技术来验证代码中的假设,你认为不可能发生的事情在现实世界中往往会发生。

   a) 从来没听说过;   b) 太麻烦,不用;  c) 想用,但没有时间。  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

 

[c]15. 只在异常的情况下才使用异常 (Exception),  不加判断地过多使用异常,会降低代码的效率和可维护性。记住不要用异常来传递正常的信息。

   a) 从来没听说过;   b) 抓住所有异常  c) 如果有明确要求,我可以做好。  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

 

[c]16. 善始善终。如果某个函数申请了空间或其他资源,这个函数负责释放这些资源。

   a) 从来没听说过;   b) 随缘;  c) 有时这样做。  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

 

[c]17. 当你的软件有多种技术结合在一起的时候,要采用松耦合的配置模式,而不是要把所有代码都混到一起。

   a) 从来没听说过;   b) 没有实践的机会;  c) 代码都在一起比较好管理。  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

 

[b]18. 把常用模块的功能打造成独立的服务,通过良好的界面 (API) 来调用不同的服务。

   a) 从来没听说过;   b) 拷贝代码过来用也可以  c) 如果有明确要求,我可以做好。  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

 

[d]19. 在设计中考虑对并行的支持,这样你的API 设计会比较容易扩展。

   a) 从来没听说过;   b) 并行不会出错的;  c) 任何代码都应支持并行。  d) 考虑在适当的层次支持并行     e) 不但主动做, 还会影响同事一起做好

 

[c]20. 在设计中把展现模块 (View) 和实体模块 (Model) 分开,这样你的设计会更有灵活性。 

   a) 代码都在一起比较好改;   b) 随缘啦;  c) 没搞清楚啥是V,啥是M。  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

 

[b]21. 重视算法的效率,在开始写之前就要估计好算法的效率是哪一个数量级上的(big-O)。

   a) 从来没听说过;   b) 我的数据量不大,无所谓;  c) 不会有效率问题的,现在CPU 都快了。  d) 主动测试程序效率,以验证估算     e) 不但主动做, 还会影响同事一起做好

 

[c]22. 在实际的运行场景中测试你的算法,不要停留在数学分析层面。有时候一个小小的实际因素 (是否支持大小写敏感的排序,数据是否支持多语言)会导致算法效率的巨大变化。

   a) 从来没听说过;   b) 想用,但不知道工具  c) 主要靠肉眼观察算法效率。  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

 

[a]23. 经常重构代码,同时注意要解决问题的根源。

   a) 从来没听说过;   b) 任何修改都可以叫重构;  c) 每天应该重构两次。  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

 

[d]24. 在开始设计的时候就要考虑如何测试 ,如果代码出了问题,有log 来辅助debug 么? 尽早测试,经常测试,争取实现自动化测试,争取每一个构建的版本都能有某些自动测试。

   a) 从来没听说过;   b) 我的代码不会出问题的;  c) 项目没有安排时间,我也没有提这事。  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

 

[b]25. 代码生成工具可以生成一堆一堆的代码,在正式使用它们之前,要确保你能理解它们,并且必要的时候能debug 这些代码。

   a) 从来没听说过;   b) 从来不看那些代码;  c) 那些代码没有bug。  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

 

[c]26. 和一个实际的用户一起使用软件,获得第一手反馈。 

   a) 从来没听说过;   b) 用户太蠢,不值得听反馈;  c) 想做但是没有机会。  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

 

[c]27. 在自动测试的时候,要有意引地入bug,来保证自动测试的确能捕获这些错误。

   a) 没听说过;   b) 不必这么麻烦;   c) 如果有明确要求,我可以做好。  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

 

[d]28. 如果测试没有做完,那么开发也没有做完。

   a) 从来没听说过;   b) 签入代码,就是做完了;  c) 。  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

 

[d]29. 适当地追求代码覆盖率:每一行的代码都覆盖了,但是程序未必正确。要确保程序覆盖了不同的程序状态和各种组合条件。

   a) 从来没听说过;   b) 覆盖20% 就好了;  c) 要覆盖至少60%。  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

 

[a]30. 如果团队成员碰到了一个有普遍意义的bug,  应该建立一个测试用例抓住以后将会出现的类似的bug。

   a) 从来没听说过;   b) 每个bug都是特殊的;  c) 测试用例不值得加  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

 

[c]31. 测试:多走一步,多考虑一层。如果程序运行了一星期不退出,如果用户的屏幕分辨率再提高一个档次,这个程序会出什么可能的错误?

   a) 从来没听说过;   b) 如果有问题,用户会报告的,我们不用测这些;  c) 如果有明确要求,我可以做好。  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

 

[c]32. (带领团队)了解用户的期望值,稍稍超出用户的期望值,让用户有惊喜。

    a) 从来没听说过;   b) 我们决定用户的期望;  c) 如果有明确要求,我可以做好。  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

 

[c]33. (带领团队) 不要停留在被动地收集需求,要挖掘需求。真正的需求可能被过时的假设、对用户的误解或其他因素所遮挡。

   a) 从来没听说过;   b) 用户不说的,我们不做;  c) 如果有明确要求,我可以做好。  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

 

[c]34. (带领团队)把所有的术语和项目相关的名词、缩写等都放在一个地方。

   a) 从来没听说过;   b) 都记在我脑子里;  c) 大家看代码就好  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

 

[d]35. (带领团队)不要依赖于某个人的手动操作,而是要把这些操作都做成有相关权限的人士都能运行的脚本。这样就不会出现因为某人休假而项目被卡住的情况。

   a) 从来没听说过;   b) 我们没有休假的,没关系;  c) 出了问题再说  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

 

[d]36. (带领团队)要让重用变得更容易。一个软件团队要创造一种环境,让大家有轻松的心态来尝试各种想法 (例如,模块的重用,效能的提升,等)。

   a) 都听领导的;   b) 团队严肃紧张最好;  c) 不必尝试,失败的可能性太大。  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

 

[c]37. (带领团队)在每一次迭代之后,都要总结经验,让下一次迭代的进度安排更可靠,质量更高。

    a) 没有时间总结,直接做下一版;   b) 总结用处不大;  c) 如果上级有要求,就做一下;  d) 一直主动这样做     e) 不但主动做, 还会影响同事一起做好

转载于:https://www.cnblogs.com/cxx111/p/6855961.html

内容概要:本文围绕“MATLAB基于Copula理论的多风电场风电预测误差时空相关性建模研究”展开,重点利用Copula理论对多个风电场的预测误差进行时空相关性建模,旨在提高风电功率预测的准确性与可靠性。通过MATLAB实现建模过程,充分考虑风电预测误差在时间和空间维度上的统计特性与依赖结构,构建能够刻画复杂非线性相关关系的概率模型。该方法有助于提升高比例可再生能源接入背景下电力系统调度、风险评估与稳定性分析的能力,尤其适用于多风电场协同运行与预测误差不确定性管理场景。文中可能涉及边缘分布拟合、Copula函数选型、参数估计与模型验证等关键技术环节。; 适合人群:具备一定概率统计与电力系统背景知识,熟悉MATLAB编程,从事新能源预测、电力系统规划或风险管理等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于多风MATLAB基于Copula理论的多风电场风电预测误差时空相关性建模研究电场联合预测误差建模,提升区域风电出力预测精度;②支撑电力系统风险评估、储能配置与调度决策,增强电网对风电波动性的适应能力;③复现高水平期刊(如SCI)研究成果,推动学术研究与实际应用结合。; 阅读建议:建议读者结合文中提供的MATLAB代码深入理解Copula建模流程,重点关注边缘分布选择与Copula函数比较,同时可扩展至光伏等其他可再生能源的时空相关性建模研究。
内容概要:本文介绍了一种基于变分模态分解(VMD)与麻雀搜索算法(SSA)优化的最小二乘支持向量机(LSSVM)相结合的多变量电力负荷预测模型,该模型通过Matlab代码实现。首先利用VMD对原始负荷序列进行分解,降低非平稳性;再通过SSA优化LSSVM的关键参数,提高预测精度;最后将处理后的各模态分量重构得到最终预测结果。该方法有效提升了负荷预测的准确性与稳定性,适用于多变量输入场景下的短期负荷预测任务。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的高校研究生、科研人员及从事能源预测相关工作的工程技术人员;尤其适合正在开展智能优化算法与机器学习在电力负荷预测方向研究的学者。; 使用场景及目标:①用于提升电力系统中短期负荷预测精度,支持电网调度与运行决策【VMD-SSA-LSSVM】基于变分模态分解与麻雀优化Lssvm的负荷预测【多变量】(Matlab代码实现);②为研究VMD、SSA、LSSVM等先进算法在时间序列预测中的融合应用提供可复现的技术方案与代码参考;③作为SCI论文复现或科研项目开发的基础模型框架。; 阅读建议:建议读者结合文中涉及的信号分解、智能优化与机器学习理论,逐步调试Matlab代码,理解每一步的数据处理与参数优化逻辑,并尝试在不同数据集上验证模型性能,进一步拓展至风电、光伏等可再生能源出力预测领域。
本研究项目聚焦于毫米波雷达环境感知系统的开发,以1843AOPEVM硬件平台为基础构建点云生成框架。该系统采用快速傅里叶变换相位检测技术实现角度测量,通过频域信号处理将雷达回波转换为三维空间坐标集合。在技术演进过程中,研究团队持续优化系统架构以应对实际应用中的技术挑战。 针对复杂地形环境中的信号干扰问题,项目组于2023年5月提出数据层级的地面杂波抑制方案,计划通过新型滤波函数提升系统在强反射背景下的目标识别能力。该改进措施将配套详细的技术文档说明,确保算法逻辑的透明性和可复现性。 随着研究深入,系统功能模块逐步完善。2023年7月版本规划集成雷达成像组件,旨在通过多维度数据融合提升点云建模精度。此项更新将在相关学术论文正式发表后,于代码托管平台同步发布完整实现方案。同年11月,团队进一步引入压缩感知理论框架,该创新性方法能够显著降低数据采集需求同时保持信号重建质量,相关研究成果已通过学术评审。 需要特别关注的是,2024年6月发布的技術备忘录指出扩展卡尔曼滤波第三版实现存在算法缺陷。研究数据表明,采用位置差分进行速度预估可能引发估计值发散现象,建议在工程应用中采用更稳健的状态估计策略。 本项目完整技术栈涵盖毫米波信号处理、压缩感知理论、动态系统估计等多个前沿领域,形成了从原始信号采集到三维环境重建的完整技术链条。系统实现代码已封装为标准化模块,其命名规范明确体现了毫米波雷达点云生成的核心功能定位。通过持续的技术迭代与算法优化,该研究为自动驾驶、智能感知等应用场景提供了可靠的技术基础。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
内容概要:本文介绍了一个用于改进多旋翼无人机动态模拟的模块化仿真环境,基于Matlab和Simulink平台实现,旨在为无人机系统的研究与开发提供灵活、可扩展的仿真工具。该仿真环境涵盖了无人机的动力学建模、控制算法设计与验证等功能,支持如PD控制、路径规划、协同飞行等多种应用场景,并结合具体案例(如AscTec Pelican四旋翼无人机)展示了控制器的设计与仿真效果。文档还列举了多个相关研究方向和技术实现,包括遗传算法路径规划、最优控制、SVPWM模型、风光制氢系统优化等,体现出其在多领域科研仿真中的广泛应用价值。; 适合人群:具备一定Matlab/Simulink编程基础,从事无人机系统仿真、控【UAV】改进的多旋翼无人机动态模拟的模块化仿真环境(Matlab、Simulink实现)制算法研究及相关领域科研工作的研究生、工程师或科研人员;熟悉自动控制、飞行器动力学等相关知识者更佳; 使用场景及目标:①构建多旋翼无人机高精度动态仿真模型;②设计与验证各类控制策略(如PD控制、最优控制);③开展路径规划、协同控制等高级功能的算法开发与测试;④支持学术论文复现与SCI级别科研项目开发; 阅读建议:建议按文档结构逐步学习,结合提供的Matlab代码实例进行实践操作,重点关注动力学建模与控制器设计流程,同时可利用文中提供的网盘资源获取完整仿真模型与算法代码,辅助理解和复现实验结果。
内容概要:本文围绕“基于配电网韧性提升的应急移动电源预配置和动态调度”展开,重点介绍上半部分——MPS(Mobile Power Sources)预配置的理论模型与Matlab代码实现。研究旨在灾害或突发事件下,通过科学预配置应急移动电源,提高配电网在极端情况下的恢复能力与供电可靠性。文中构建了考虑网络拓扑、负荷重要性、路径可达性等因素的优化模型,并采用Matlab进行仿真验证,展示了如何通过优化算法确定MPS的最佳部署位置与容量配置,从而为后续动态调度奠定基础。该工作属于SCI一区级别研究成果的复现,具有较强的工程应用背景与学术参考价值。; 适合人群:电力系统、能源互联网、应急管理等相关领域的研究生、科研人员及工程技术人员,具备一定的优化建模与Matlab编程基础者更佳;; 使用场景及目标:①用于学习和复现高【SCI一区复现】基于配电网韧性提升的应急移动电源预配置和动态调度()—MPS预配置(Matlab代码实现)水平电力系统韧性优化论文中的数学建模方法与求解流程;②掌握应急电源在配电网灾后恢复中的预配置策略设计思路;③为开展配电网可靠性提升、灾害应对调度等课题提供技术参考与代码基础; 阅读建议:建议结合文档中提到的完整资源包(含YALMIP等工具)进行代码调试与案例复现,同时参考同类研究如动态调度部分及其他SCI复现内容,以形成对MPS全周期调度问题的系统性理解。
内容概要:本文围绕“动态环境下多无人机系统的协同路径规划与防撞研究”展开,基于Matlab代码实现,重点研究多无人机在复杂动态环境中的协同路径规划算法与防碰撞机制。通过构建合理的数学模型,结合智能优化算法与路径规划策略(如遗传算法、虚拟力法或改进的A*等),实现多无人机系统的高效协同飞行与实时避障,确保任务执行的安全性与效率。文中提供了完整的Matlab仿真代码,支持对算法性能的验证与复现,适用于科研与工程实践。; 适合人群:具备一定Matlab编程基础,从事无人机系统、智能交通、自动【无人机协同】动态环境下多无人机系统的协同路径规划与防撞研究(Matlab代码实现)化控制、路径规划等相关领域的研究生、科研人员及工程技术人员;熟悉基本优化算法和控制系统原理者更佳; 使用场景及目标:①用于多无人机协同任务(如搜索救援、环境监测、物流配送)中的路径规划与避撞策略设计;②支撑SCI论文复现与算法对比研究;③作为教学案例帮助理解多智能体协同控制的核心思想与实现方法; 阅读建议:建议结合提供的Matlab代码逐模块分析,重点关注环境建模、路径规划算法设计、冲突检测与规避机制的实现逻辑,并通过仿真实验调试参数以深入掌握算法特性。同时可扩展至三维空间或多约束条件下的路径优化问题研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值