ets( )函数和自动预测

  • ets()

ets()函数还可以拟合有可乘项的指数模型,加入抑制因子(dampening component)以及自动化预测

之前对AirPassengers时序做对数变换后拟合出了可加指数模型。类似地,假定趋势项可加,但季节项和误差项可乘,可通过

ets(AirPassengers,model=“MAM”)函数或 hw(AirPassengers,seasonal=“multiplicative”)函数对原始数据拟合可乘模型。

当采用可乘模型时,准确度统计量和预测值都基于原始尺寸(即以千为单位的乘客数),这是明显的优势

ets()函数可用来拟合抑制项,时序预测一般假定序列的长期趋势是一直向上的(如房价市场),而一个抑制项则使得趋势项在一段时间内靠近一条水平渐进线,

在很多问题中,一个有抑制项的模型往往更符合实际情况

  • 获取拟合优度最高的模型

ets()自动获取拟合优度最高的模型,以对 Johnson& Johnson数据的指数模型拟合为例

> library(forecast)
> fit <- ets(JohnsonJohnson)
> fit
ETS(M,A,M) 

Call:
 ets(y = JohnsonJohnson) 

  Smoothing parameters:
    alpha = 0.1481 
    beta  = 0.0912 
    gamma = 0.4908 

  Initial states:
    l = 0.6146 
    b = 0.005 
    s=0.692 1.2644 0.9666 1.077

  sigma:  0.0889

     AIC     AICc      BIC 
166.6964 169.1289 188.5738 
> plot(forecast(fit), main="Johnson and Johnson Forecasts", 
+     ylab="Quarterly Earnings (Dollars)", xlab="Time",flty = 2) #flty=2:折线为虚线

07090133_yPBj.png

 带趋势项和季节项的可乘指数光滑预测,其中预测值由虚线表示,80%和95%置信区间分别由淡灰色和深灰色表示

 

转载于:https://my.oschina.net/u/1785519/blog/1563587

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值