Python实现ETS指标平滑模型(ETSModel算法)项目实战

429 篇文章 284 订阅
本文介绍了如何使用ETSModel算法构建一个用于预测的时间序列分析模型,包括数据获取、预处理、模型构建、参数初始化以及评估过程。通过实际案例展示了如何用Python工具进行操作,并提供了项目资源链接。
摘要由CSDN通过智能技术生成

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

ETS模型(Error-Trend-Seasonality Model),是一种广泛应用于时间序列预测的统计方法。ETS模型专门用于处理包含误差、趋势和季节性成分的时间序列数据。

Error (E):表示随机误差项,即在模型中无法解释的短期波动部分。

Trend (T):代表时间序列中的长期上升或下降趋势,可以是线性的、二次的、指数的或其他形式的趋势,并且在某些实现中趋势也可能是随机的(例如随机游走)。

Seasonality (S):反映数据随固定周期重复出现的模式,如月度、季度或年度等季节性变化。

ETS模型通过分别对这三个组成部分建模,然后将它们组合起来以捕捉时间序列的整体动态行为。

本项目通过ETSModel算法来构建ETS指标平滑模型。   

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

DATE

2

y

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

      

从上图可以看到,总共有1个变量,数据中无缺失值,共49条数据。

关键代码:

3.3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:    

4.探索性数据分析

4.1 变量直方图

用Matplotlib工具的hist()方法绘制直方图:

从上图可以看到,变量主要集中在150~500之间。  

4.2 折线图

从上图中可以看到,房价指数是不断波动的。

5.构建ETS指标平滑模型

主要使用ETSModel算法,用于ETS指标平滑模型。 

5.1 构建模型

编号

模型名称

参数

1

ETS指标平滑模型 

error='add'

2

trend='add'

3

damped_trend=True

5.2 模型摘要信息

5.3 模型摘要信息

应用启发式方法对模型参数进行初始化。

6.模型评估

6.1 真实值与预测值对比图一

6.2 真实值与预测值对比图二

7.结论与展望

综上所述,本文采用了ETSModel算法来构建ETS指标平滑模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张陈亚

您的鼓励,将是我最大的坚持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值