双曲线

例1【2019届高三理科数学第三轮模拟训练题】方程\(\cfrac{x^2}{8+a}-\cfrac{y^2}{a-4}=1\)表示双曲线的充要条件是________.

分析:方程要表示为双曲线,等价于\(\left\{\begin{array}{l}{8+a>0}\\{a-4>0}\end{array}\right.\)或者\(\left\{\begin{array}{l}{8+a<0}\\{a-4<0}\end{array}\right.\)

解得\(a<-8\)\(a>4\)。故其充要条件为\(a\in (-\infty,8)\cup(4,+\infty)\)

【引申】方程\(\cfrac{x^2}{8+a}-\cfrac{y^2}{a-4}=1\)表示椭圆的充要条件是________.

分析:先将方程变形为\(\cfrac{x^2}{8+a}+\cfrac{y^2}{-(a-4)}=1\),方程要表示为椭圆,

等价于\(\left\{\begin{array}{l}{8+a>0}\\{a-4<0}\\{8+a>-(4-a)}\end{array}\right.\),或\(\left\{\begin{array}{l}{8+a>0}\\{a-4<0}\\{8+a<-(4-a)}\end{array}\right.\)

解得\(-8<a<-2\)\(-2<a<4\),故其表示椭圆的充要条件为\(a\in (-8,-2)\cup (-2,4)\).

补充:当\(a=-2\)时,方程表示圆;

例2【2016陕西省二检理科第16题】

已知F是双曲线C:\(x^2-\cfrac{y^2}{8}=1\)的右焦点,若\(P\)\(C\)的左支上的一点,\(A(0,6\sqrt{6})\)\(y\)轴上的一点,求\(\Delta APF\)面积的最小值。

分析:求\(\Delta APF\)面积的最小值,其中边AF长度固定,故只需要求边AF上的高线的最小值即可。

法1、平行线法,如图1所示,容易知道点\(F(3,0)\),故直线\(AF:2\sqrt{6}x+y-6\sqrt{6}=0\)

992978-20170926190735090-394994485.jpg

\(l\)和直线AF平行且和双曲线的左支相切与点P,故直线\(l:2\sqrt{6}x+y+m=0\)

联立\(2\sqrt{6}x+y+m=0\)\(x^2-\cfrac{y^2}{8}=1\),消\(y\)得到\(16x^2+4\sqrt{6}mx+m^2+8=0\)

由于相切得到\(\Delta =96m^2-4\times16(m^2+8)=0\),解得\(m=\pm 4\),结合图像将\(m=-4舍弃\)

即直线\(l:2\sqrt{6}x+y+4=0\),故三角形的高的最小值即两条平行线的间距,

故AF边上的高\(h=\cfrac{|4-(-6\sqrt{6})|}{\sqrt{(2\sqrt{6})^2+1}}=\cfrac{6\sqrt{6}+4}{5}\)

\(S_{min}=\cfrac{1}{2}\times|AF|\times \cfrac{6\sqrt{6}+4}{5}=\cfrac{1}{2}\times15\times \cfrac{6\sqrt{6}+4}{5}=9\sqrt{6}+6\)

法2、函数法,如图2所示,由题目可知双曲线的左支对应的函数为\(y=f(x)=\pm\sqrt{8x^2-8}(x<0)\)

设点\(P(x_0,y_0)\),则\(f'(x)=\pm\cfrac{1}{2\sqrt{8x^2-8}}\cdot 16x=\pm\cfrac{8x}{\sqrt{8x^2-8}}\)

结合图像可知\(f'(x)<0\),故取\(f'(x)=\cfrac{8x}{\sqrt{8x^2-8}}(x<0)\),当\(f'(x)=k_{AF}=-2\sqrt{6}\)时,

AF边上的高线最小(可结合平行线法理解),故\(\cfrac{8x_0}{\sqrt{8x_0^2-8}}=-2\sqrt{6}\)

解得\(x_0=-\cfrac{\sqrt{6}}{2}\),代入得到\(y=2\),即切点\(P(-\cfrac{\sqrt{6}}{2},2)\)

故高\(h=\cfrac{|2\sqrt{6}\cdot(-\cfrac{\sqrt{6}}{2})+2-6\sqrt{6}|}{5}=\cfrac{6\sqrt{6}+4}{5}\)

\(S_{min}=\cfrac{1}{2}\times|AF|\times \cfrac{6\sqrt{6}+4}{5}=\cfrac{1}{2}\times15\times \cfrac{6\sqrt{6}+4}{5}=9\sqrt{6}+6\)

法3、参数方程法,不要求学生掌握。由于双曲线为\(x^2-\cfrac{y^2}{8}=1\)

故其参数方程为\(\begin{cases}x=\cfrac{1}{cos\theta}\\y=2\sqrt{2}tan\theta\end{cases}(\theta为参数)\)

\(h=\cfrac{|\cfrac{2\sqrt{6}}{cos\theta}+2\sqrt{2}tan\theta-6\sqrt{6}|}{5}=\cfrac{|\cfrac{2\sqrt{6}}{cos\theta}+\cfrac{2\sqrt{2}sin\theta}{cos\theta}-6\sqrt{6}|}{5}\)

以下难点转化为求\(\cfrac{2\sqrt{6}}{cos\theta}+\cfrac{2\sqrt{2}sin\theta}{cos\theta}\)的值。

\(m=\cfrac{2\sqrt{6}}{cos\theta}+\cfrac{2\sqrt{2}sin\theta}{cos\theta}\)

则有\(2\sqrt{6}+2\sqrt{2}sin\theta=mcos\theta\),故\(\sqrt{m^2+8}cos\theta=2\sqrt{6}\)

\(cos\theta=\cfrac{2\sqrt{6}}{\sqrt{m^2+8}}\),故\(|cos\theta|=|\cfrac{2\sqrt{6}}{\sqrt{m^2+8}}|\leq 1\)

解得\(m\ge 4\)或者\(m\leq -4\),由于参数\(\theta\in(0,\pi)\),且点P在左支,

\(\theta\in(\cfrac{\pi}{2},\pi)\),故\(m<0\),故当\(m=-4\)\(d\)有最小值,

此时\(d_{min}=\cfrac{|-4-6\sqrt{6}|}{5}=\cfrac{4+6\sqrt{6}}{5}\)

\(S_{min}=\cfrac{1}{2}\times|AF|\times \cfrac{6\sqrt{6}+4}{5}=\cfrac{1}{2}\times15\times \cfrac{6\sqrt{6}+4}{5}=9\sqrt{6}+6\)

例3【2017宝鸡中学高三理科第一次月考第8题】

已知抛物线\(y^2=4x\)的准线和双曲线\(\cfrac{x^2}{a^2}-\cfrac{y^2}{4}=1\)相交于\(A\)\(B\)两点,\(F\)为抛物线的焦点,\(\angle FAB=45^\circ\),则双曲线的离心率是多少?

$A.3$ $B.2$ $C.\sqrt{6}$ $D.\sqrt{3}$

分析:抛物线的焦点为\((1,0)\),准线为\(x=-1\),令\(AB\)的中点为\(C\),则\(|CF|=2\)

992978-20171006161801115-1818949197.png

又有题目可知,\(\Delta FAB\)为等腰直角三角形,故\(|AC|=|CF|=2\)

故点A\((-1,2)\) 代入双曲线方程得到\(a^2=\cfrac{1}{2}\)

\(c^2=a^2+b^2=4+\cfrac{1}{2}=\cfrac{9}{2}\)

则双曲线的离心率为\(e=\sqrt{\cfrac{c^2}{a^2}}=3\)。 故选\(A\)

例4【2017凤翔中学高三理科数学第二次月考第7题】

若圆\(x^2+y^2-3x-4y-5=0\)关于直线\(ax-by=0(a>0,b>0)\)对称,则双曲线\(\cfrac{x^2}{a^2}-\cfrac{y^2}{b^2}=1\)的离心率是【】

$A.\cfrac{4}{3}$ $B.\cfrac{5}{3}$ $C.\cfrac{5}{4}$ $D.\cfrac{7}{4}$

分析:先将圆配方为\((x-\cfrac{3}{2})^2+(y-2)^2=9+\cfrac{9}{4}\)

由已知可知,圆心\((\cfrac{3}{2},2)\)一定在直线\(ax-by=0\)上,

\(\cfrac{3}{2}a=2b\),即\(3a=4b\)

\(a=4t(t>0)\),则\(b=3t\)\(c=5t\)

故离心率\(e=\cfrac{c}{a}=\cfrac{5}{4}\)。故选\(C\)

例5【2018陕西省第二次质量检测第11题】

已知点\(F_1,F_2\)分别是双曲线\(\cfrac{x^2}{a^2}-\cfrac{y^2}{b^2}=1(a>0,b>0)\)的左右两个焦点,点\(P\)是双曲线右支上的一点,若\(P\)点的横坐标\(x_0=\cfrac{4}{3}a\)时,有\(F_1P\perp F_2P\),则该双曲线的离心率\(e\)是【】

$A.\cfrac{3\sqrt{2}}{2}$ $B.\cfrac{3}{2}$ $C.2$ $D.3$

分析:将\(x_0=\cfrac{4}{3}a\)代入双曲线方程\(\cfrac{x^2}{a^2}-\cfrac{y^2}{b^2}=1(a>0,b>0)\)

求得\(y=\pm\cfrac{\sqrt{7}}{3}b\),不妨取正,即点\(P(\cfrac{4}{3}a,\cfrac{\sqrt{7}}{3}b)\)

\(F_1(-c,0)\)\(F_2(c,0)\),由\(\overrightarrow{F_1P}\cdot \overrightarrow{F_2P}=0\)

得到\((\cfrac{4a}{3}+c,\cfrac{\sqrt{7}b}{3})\cdot(\cfrac{4a}{3}-c,\cfrac{\sqrt{7}b}{3})=0\)

\((\cfrac{4a}{3})^2-c^2+(\cfrac{\sqrt{7}b}{3})^2=0\)

\(c^2=a^2+b^2\),代入上式,得到\(a^2=\cfrac{2}{9}c^2\)

\(e^2=\cfrac{c^2}{a^2}=\cfrac{9}{2}\),故\(e=\cfrac{3\sqrt{2}}{2}\)。故选\(A\)

例6【】已知点\(F_1,F_2\)分别是双曲线\(C:\cfrac{x^2}{a^2}-\cfrac{y^2}{b^2}=1(a>0,b>0)\)的左右两个焦点,\(|F_1F_2|=6\),点\(P\)在双曲线上,且\(P\)是第一象限的点,过\(P\)点做双曲线的切线与\(x\)轴交于\(Q\)点,\(\angle F_1PQ=30^{\circ}\),由双曲线的光学性质知,\(PQ\)\(\angle F_1PF_2\)的平分线,已知\(S_{\triangle PF_1F_2}=4\sqrt{3}\),有\(F_1P\perp F_2P\),则该双曲线的离心率\(e\)是【】

$A.\sqrt{3}$ $B.\cfrac{5\sqrt{5}}{3}$ $C.\cfrac{2\sqrt{3}}{3}$ $D.\cfrac{3\sqrt{5}}{5}$

例7【2017高考理科数学Ⅲ卷第5题】【2019高三理科二轮限时训练3】已知双曲线\(C:\cfrac{x^2}{a^2}-\cfrac{y^2}{b^2}=1\) \((a>0,b>0)\)的一条渐近线方程为\(y=\cfrac{\sqrt{5}}{2}x\),且与椭圆\(\cfrac{x^2}{12}+\cfrac{y^2}{3}=1\)有公共焦点,则\(C\)的方程为【】

$A.\cfrac{x^2}{8}-\cfrac{y^2}{10}=1$ $B.\cfrac{x^2}{4}-\cfrac{y^2}{5}=1$ $C.\cfrac{x^2}{5}-\cfrac{y^2}{4}=1$ $D.\cfrac{x^2}{4}-\cfrac{y^2}{3}=1$

分析:由双曲线\(C:\cfrac{x^2}{a^2}-\cfrac{y^2}{b^2}=1\)可知其渐进线为\(y=\cfrac{b}{a}x\),由已知渐近线方程为\(y=\cfrac{\sqrt{5}}{2}x\)

则可设\(a=2k\)\(b=\sqrt{5}k(k>0)\),则\(c=3k\),又由椭圆的\(c=3\),可可知\(3k=3\),即\(k=1\),故双曲线的\(a=2\)\(b=\sqrt{5}\),则其方程为\(\cfrac{x^2}{4}-\cfrac{y^2}{5}=1\),故选\(B\)

例8【2019高三理科数学二轮复习用题】已知\(F_1\)\(F_2\)分别是双曲线\(C:\cfrac{x^2}{a^2}-\cfrac{y^2}{b^2}=1\) \((a>0,b>0)\)的左右焦点,过点\(F_2\)的直线交双曲线的右支于\(P\)\(Q\)两点,且\((\overrightarrow{F_1P}+\overrightarrow{F_1Q})\cdot \overrightarrow{PQ}=0\),过双曲线的右顶点作平行于其一条渐近线的直线\(l\),若直线\(l\)\(PQ\)于点\(M\),且\(|QM|=3|PM|\),则双曲线的离心率为【】

$A.2$ $B.\sqrt{3}$ $C.\cfrac{5}{3}$ $D.\cfrac{3}{2}$

分析:由于\((\overrightarrow{F_1P}+\overrightarrow{F_1Q})\cdot \overrightarrow{PQ}=0\),则可知\(PQ\perp x\)轴,又由于\(|QM|=3|PM|\),则\(M\)\(PF_2\)的中点;

由于直线\(PQ\)\(x=c\),将其代入双曲线,得到\(\cfrac{c^2}{a^2}-\cfrac{y^2}{b^2}=1\),解得\(y=\cfrac{b^2}{a}\)

即点\(P(c,\cfrac{b^2}{a})\),则点\(M(c,\cfrac{b^2}{2a})\)

又由于双曲线的渐近线为\(y=\cfrac{b}{a}x\),则可知\(\cfrac{\cfrac{b^2}{2a}-0}{c-a}=\cfrac{b}{a}\),得到\(\cfrac{b}{2}=c-a\)

\(b=2(c-a)\),两边平方得到,\(b^2=4(c-a)^2\),即\(c^2-a^2=4c^2-8ac+4a^2\),即\(3c^2-8ac+5a^2=0\),同除以\(a^2\)

\(3e^2-8e+5=0\),解得\(e=\cfrac{5}{3}\)\(e=1\)(舍去),故选\(C\)

例9【2019届高三理科数学二轮用题】已知\(F_1\)\(F_2\)分别是双曲线\(C:\cfrac{x^2}{a^2}-\cfrac{y^2}{b^2}=1\) \((a>0,b>0)\)的左右焦点,以\(F_2\)为圆心做一个圆,使该圆过线段\(OF_2\)的中点,若该圆与双曲线的两条渐近线有公共点,则双曲线\(C\)的离心率的取值范围是___________。

分析:如下图所示,可知圆\(F_2\)的圆心为\(F_2(c,0)\),半径为\(r=\cfrac{c}{2}\),由于圆和双曲线都关于坐标轴对称,故只需要保证圆和一条渐近线\(y=\cfrac{b}{a}x\)有公共点即可,

992978-20190425175201533-1532308225.jpg

此时可以使用联立直线方程和双曲线的方程,使用\(\Delta \ge 0\)的思路,也可以利用圆心到直线的距离小于半径的思路,很明显第二个思路的运算量要小一些。

此时圆心为\(F_2(c,0)\),半径为\(r=\cfrac{c}{2}\),直线为\(bx-ay=0\),故\(d=\cfrac{|bc-a\times 0|}{\sqrt{a^2+b^2}}\leq \cfrac{c}{2}\)

化简整理得到,\(2b\leq c\),即\(4b^2\leq c^2\),则\(4c^2-4a^2\leq c^2\),整理为\(\cfrac{c^2}{a^2}\leq \cfrac{4}{3}\),故\(e\leq \cfrac{2\sqrt{3}}{3}\),又双曲线的\(e>1\),故\(e\in (1,\cfrac{2\sqrt{3}}{3}]\).

例10【2019高三理科数学启动卷,2019陕西省二检试卷第16题】已知等腰\(\triangle ABC\)的底边端点\(A\)\(B\)在双曲线\(\cfrac{x^2}{6}-\cfrac{y^2}{3}=1\)的右支上,顶点\(C\)\(x\)轴上,且\(AB\)不垂直于\(x\)轴,则顶点\(C\)的横坐标\(t\)的取值范围是__________。

分析:设\(A(x_1,y_1)\)\(B(x_2,y_2)\),弦\(AB\)的垂直平分线交\(x\)轴于点\(C(t,0)\)

\(AB\)的中点为\(M(x_0,y_0)\),则\(x_0>\sqrt{6}\)

992978-20190506201949199-1523069721.jpg

由题意有\(\cfrac{x_1^2}{6}-\cfrac{y_1^2}{3}=1\)①,\(\cfrac{x_2^2}{6}-\cfrac{y_2^2}{3}=1\)②,两式相减得到,

\((x_1+x_2)(x_1-x_2)-2(y_1+y_2)(y_1-y_2)=0\),于是有\(x_0(x_1-x_2)-2y_0(y_1-y_2)=0\)

\(k_{AB}=\cfrac{y_2-y_1}{x_2-x_1}=\cfrac{x_0}{2y_0}\),又\(k_{MC}=\cfrac{y_0}{x_0-t}\),由\(k_{AB}\cdot k_{MC}=-1\)得到,

\(\cfrac{y_0}{x_0-t}\cdot \cfrac{x_0}{2y_0}=-1\),即\(x_0+2(x_0-t)=0\),则\(t=\cfrac{3x_0}{2}>\cfrac{3\sqrt{6}}{2}\)

\(t\in (\cfrac{3\sqrt{6}}{2},+\infty)\)

例11【2019高三理科数学三轮试题】已知双曲线\(\cfrac{x^2}{m}+\cfrac{y^2}{3}=1\)的离心率为\(\cfrac{\sqrt{15}}{3}\),则此双曲线的渐近线方程为【】

$A.y=\pm \cfrac{\sqrt{2}}{2} x$ $B.y=\pm \cfrac{\sqrt{3}}{2} x$ $C.y=\pm \cfrac{\sqrt{5}}{2} x$ $D.y=\pm \cfrac{\sqrt{6}}{2} x$

分析:由题可知,\(a^2=3\)\(b^2=-m\),则\(c^2=3-m\),又\(e=\cfrac{\sqrt{15}}{3}\)

\(e^2=\cfrac{c^2}{a^2}=\cfrac{15}{9}=\cfrac{2-m}{3}\),解得\(m=-2\),即双曲线为\(\cfrac{y^2}{3}-\cfrac{x^2}{2}=1\)

则由\(\cfrac{y^2}{3}-\cfrac{x^2}{2}=0\),求得渐近线方程为\(y=\pm \cfrac{\sqrt{6}}{2} x\),故选\(D\)

例12【2019届高三理科数学三轮模拟试题】【基本题目】已知双曲线\(C\)的焦点在坐标轴上,中心在坐标原点,其一条渐近线与直线\(x+2y+1=0\)平行,则双曲线\(C\)的离心率为【】

$A.\sqrt{2}$ $B.\cfrac{\sqrt{5}}{2}$ $C.\sqrt{5}$ $D.\cfrac{\sqrt{5}}{2}或\sqrt{5}$

分析:由题目可知,由于双曲线\(C\)的焦点在坐标轴上,中心在坐标原点,故有两种情形,焦点在\(x\)轴和焦点在\(y\)轴,

则渐近线的斜率\(k=\cfrac{1}{2}=\cfrac{a}{b}\)或者\(k=\cfrac{1}{2}=\cfrac{b}{a}\)

\(a=1\)\(b=2\)时,此时\(c=\sqrt{5}\)\(e=\sqrt{5}\);当\(a=2\)\(b=1\)时,此时\(c=\sqrt{5}\)\(e=\cfrac{\sqrt{5}}{2}\)

综上所述,故选\(D\)

转载于:https://www.cnblogs.com/wanghai0666/p/7598188.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值