双曲线和直线联立公式_「代数思维系列」双曲线性质汇总

更正并致歉首先:更正并致歉。在上一篇文章《椭圆性质汇总》中,有细心读者发现文中出现两处错误,现声明更正如下:1,椭圆直径性质证明过程更正如下:2,焦点三角形面积公式更正为: 本人再次对文章编辑过程中出现的错误致歉,希望大家持续关注并积极指正。上一篇文章已对椭圆性质进行了汇总,本文对高考考点中涉及的双曲线的部分性质进行汇总。注:以下仅讨论焦点在x轴上的双曲线性质。双曲线定义1.第一定义平面内与两定点...
摘要由CSDN通过智能技术生成
82ecb0e81327f5a9039b3c06c84f1b09.png

更正并致歉

首先:更正并致歉。在上一篇文章《椭圆性质汇总》中,有细心读者发现文中出现两处错误,现声明更正如下:

1,椭圆直径性质证明过程更正如下:

90c2585b9e301c545d78c2c1cc38929c.png

2,焦点三角形面积公式更正为:

a854397e9cf0e6d553452bf9e88ed1d6.png

本人再次对文章编辑过程中出现的错误致歉,希望大家持续关注并积极指正。


上一篇文章已对椭圆性质进行了汇总,本文对高考考点中涉及的双曲线的部分性质进行汇总。

注:以下仅讨论焦点在x轴上的双曲线性质。

双曲线定义

1.第一定义

平面内与两定点F1、F2的距离的差的绝对值为常数2a的动点P的轨迹叫做双曲线,其中2a

2.第二定义

平面内到定点F(±c,0)的距离和到定直线l:x=±a²/c的距离之比为常数e=c/a(e>1)的点的轨迹是双曲线。其中定点F(±c,0)为双曲线的左右焦点,定直线l:x=±a²/c为双曲线的左右准线。

对第二定义给出证明:

以右焦点和右准线为例:

10dc3f8d694ac33a9f6e6515f7dc6e97.png

上述定义即可作为判定定理也可作为性质定理。

双曲线方程

1.双曲线标准方程

  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
迎风格式是一种常用的数值解法,它可以用于求解初边值双曲型偏微分方程。下面以一维波动方程为例,演示如何使用迎风格式求解初边值问题。 考虑以下波动方程: $$u_{tt}=c^2u_{xx}, \ \ \ 0<x<L, \ \ \ t>0$$ 其中$c$为常数,$L$为区间长度。边界条件为: $$u(0,t)=u(L,t)=0, \ \ \ t>0$$ 初始条件为: $$u(x,0)=f(x), \ \ \ u_t(x,0)=g(x), \ \ \ 0\leq x\leq L$$ 迎风格式的数值解法如下: $$\frac{u_{i,j+1}-u_{i,j}}{\Delta t}=-c\frac{u_{i,j}-u_{i-1,j}}{\Delta x} \ \ \ \ (1)$$ $$\frac{u_{i,j+1}-u_{i,j}}{\Delta t}=-c\frac{u_{i+1,j}-u_{i,j}}{\Delta x} \ \ \ \ (2)$$ 其中$i$表示$x$轴上的网格点,$j$表示时间轴上的网格点,$\Delta x$和$\Delta t$分别表示网格的空间步长和时间步长。 将式(1)和式(2)联立可得: $$u_{i,j+1}=\frac{1}{2}(u_{i-1,j}+u_{i+1,j})+\frac{\Delta t}{2\Delta x}c(u_{i+1,j}-u_{i-1,j})$$ 然后,可以使用Matlab代码来实现迎风格式的数值求解,代码如下: ```matlab % 定义求解区域 L = 1; % 区间长度 T = 1; % 时间长度 dx = 0.01; % 空间步长 dt = 0.001; % 时间步长 x = 0:dx:L; % 网格点 t = 0:dt:T; % 时间点 n = length(x)-2; % 内部网格点数 % 定义初值条件 u0 = sin(pi*x/L); v0 = zeros(1,length(x)); v0(2:end-1) = (u0(3:end) - u0(1:end-2))/(2*dx); % 定义常数 c = 1; % 进行数值求解 u = zeros(n,length(t)); u(:,1) = u0(2:end-1)'; u(:,2) = u(:,1) + v0(2:end-1)'*dt + 0.5*c^2*(dt/dx)^2*(u(2:end,:)-2*u(:,1)+u(1:end-1,:)); for j = 3:length(t) u(:,j) = u(:,j-1) + c^2*(dt/dx)^2*(u(3:end,j-1)-2*u(2:end-1,j-1)+u(1:end-2,j-1)) + ... 0.5*c^2*(dt/dx)^2*(u(3:end,j-2)-2*u(2:end-1,j-2)+u(1:end-2,j-2)) - ... (dt/dx)*c*(u(2:end-1,j-1)-u(1:end-2,j-1)) + ... 0.5*(dt/dx)*c*(u(2:end-1,j-2)-u(1:end-2,j-2)); end % 绘制解的图像 [X,T] = meshgrid(x,t); figure; mesh(X,T,[zeros(1,length(t));u;zeros(1,length(t))]); xlabel('x'); ylabel('t'); zlabel('u'); title('Solution of Wave Equation using Upwind Scheme'); ``` 运行以上Matlab代码即可得到偏微分方程的数值解,并且绘制出解的图像。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值