双曲线和直线联立公式_「代数思维系列」双曲线性质汇总

本文是对高考中涉及的双曲线性质进行的汇总,包括双曲线的定义、方程、切线性质、焦半径等,并探讨了切线的存在情况和直径的性质。此外,还提到了双曲线与椭圆的联系和其他相关概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

82ecb0e81327f5a9039b3c06c84f1b09.png

更正并致歉

首先:更正并致歉。在上一篇文章《椭圆性质汇总》中,有细心读者发现文中出现两处错误,现声明更正如下:

1,椭圆直径性质证明过程更正如下:

90c2585b9e301c545d78c2c1cc38929c.png

2,焦点三角形面积公式更正为:

a854397e9cf0e6d553452bf9e88ed1d6.png

本人再次对文章编辑过程中出现的错误致歉,希望大家持续关注并积极指正。


上一篇文章已对椭圆性质进行了汇总,本文对高考考点中涉及的双曲线的部分性质进行汇总。

注:以下仅讨论焦点在x轴上的双曲线性质。

双曲线定义

1.第一定义

平面内与两定点F1、F2的距离的差的绝对值为常数2a的动点P的轨迹叫做双曲线,其中2a

2.第二定义

平面内到定点F(±c,0)的距离和到定直线l:x=±a²/c的距离之比为常数e=c/a(e>1)的点的轨迹是双曲线。其中定点F(±c,0)为双曲线的左右焦点,定直线l:x=±a²/c为双曲线的左右准线。

对第二定义给出证明:

以右焦点和右准线为例:

10dc3f8d694ac33a9f6e6515f7dc6e97.png

上述定义即可作为判定定理也可作为性质定理。

双曲线方程

1.双曲线标准方程

b057916aeb89649403666978fcd9177f.png

不再详述。

2.双曲线参数方程

815ccce35b5520b15243f698a9e5079e.png

注:sec为正割函数,secθ=1/cosθ

其中θ为参数,θ的几何意义如下图:

6087f4814e008da7eb895850a385c9d4.png

以双曲线实轴和虚轴为直径分别做圆C1(图中大圆)、C2(图中小圆),对双曲线上任一点M,做x轴垂线,垂足为A'。过A'做圆C1切线,切点为A。过圆C2与x正半轴焦点B做圆C2的切线,与过M并平行于x轴的直线交于B'点。则O、A、B'三点共线,∠AOx即为参数θ。

切线

1.双曲线切线定理

双曲线的任意一条切线平分切点所在的焦点三角形顶角。

47f58501c8a854a32a0872f275eb8134.png

图中∠α=∠β,对顶角相等,切线是焦点三角形的一条角平分线。

证明从略。该性质在高考中应用较少,但其揭示了双曲线的一条光学性质,该性质在高中数学课本上也有提及,即从双曲线的一个焦点发出的光线,经双曲线反射后,其反向延长线在另一个焦点汇聚。

1e7d21d135fd3c737c0f81fd9911dbce.png

2.双曲线切线方程

过双曲线上一点P(x0,y0)的切线方程为:

7388b7ca8ba376aab07e45d08138f9fa.png

以下用求导方法给出证明:

1dcd7134be3c20f896477d60f000e7a2.png

上述证明过程用到了隐函数求导,高中范围不涉及该知识点,有兴趣的同学可以尝试用二次函数判别式推导。

3.双曲线切点弦方程

过双曲线外一点,做双曲线上的两条切线(如果存在的话),切点为A,B,则过A,B的切点弦方程为:

7388b7ca8ba376aab07e45d08138f9fa.png
922528745a1aa58c1f435bfe16859802.png

这里需要注意,过双曲线外(或上)一点做双曲线切线,最多只可能做两条切线。具体见下:

4.双曲线切线存在情况

e887ac38e98bb0d852408df7529a8723.png

如图:双曲线及渐近线将平面分成ABCDEF六个区域:

1.当P位于A、B区域时,过P可在双曲线两支各做一条切线;

2.当P位于C、D区域时,过P可在双曲线较近的一支做两条切线;

3.当P位于E、F区域时,过P不能做切线;

4.当P位于双曲线上时,过P只可在P点所在支做一条切线;

5.当P位于渐近线上(不含原点)时,过P只可在双曲线较近的一支做一条切线;

6.当P位于原点时,过P不能做切线;

具体列表如下:

c3949a6c74ad4e41f28956220c690876.png

直径

过双曲线中心的弦被称为双曲线的直径。实轴是双曲线最短的直径,双曲线直径可以无限长,故双曲线没有最长的直径。双曲线直径所在直线的斜率的绝对值必然小于渐近线斜率的绝对值。

1.双曲线直径性质

双曲线上的点与双曲线直径两端点连线的斜率(如果存在的话)之积是定值,定值为e²-1。

308d942921f75af87cd4ef4f10a3e2ba.png

特别的:双曲线上任意点到实轴两端点连线斜率之积是定值e²-1。

2.双曲线直径长

双曲线直径长公式为:

23f403da970d30b2eccf924db958cdbc.png

其中k为直径所在直线斜率。该公式请同学们自行推导。显然,直径存在的充要条件是|k|

特别的:当k=0时,上式结果为2a,即为实轴;当k趋于±b/a,即渐近线斜率时,上式结果趋于无穷大。

焦半径

1.焦半径长

焦半径长:|PF1|=|ex+a|,|PF2|=|ex-a|(F1,F2分别为左右焦点,P点在右支上时,等式右端绝对值内取正,P点在左支上时取负)。

通过准线定义证明,过程略。

2.焦半径性质

以短焦半径为直径的圆与以实轴为直径的圆外切,以长焦半径为直径的圆与以实轴为直径的圆内切。

以P点在右支上举例进行证明:

证:设以PF2为直径的圆的圆心为O2,则圆O2半径为r2=(ex-a)/2,

以长轴为直径的圆的圆心为坐标原点O,圆O半径为r=a,

两圆心距离|OO2|=(ex+a)/2=r+r2,

故以PF2为直径的圆与以长轴为直径的圆外切。

同理可证,以PF1为直径的圆与以长轴为直径的圆内切。

3.焦点弦

焦点弦长公式为:

40d4a85169943ed36c2b0bb06005959c.png

其中k为焦点弦所在直线斜率。该公式请同学们自行推导。

当|k|b/a时,焦点在焦点弦上,当|k|=b/a时,焦点弦不存在(或无限长)

特别的:当k=0时,上式结果为2a,即为实轴;当k趋于无穷大时,上式结果即为通径长:2b^2/a

4.焦点三角形

焦点三角形面积公式:

6f189a8a22c3165f4094f3df702ec8eb.png

证明从略

双曲线与椭圆

双曲线两顶点A1,A2和与y轴平行的直线交双曲线的两动点P1,P2,直线A1P1与A2P2的交点轨迹为等轴椭圆。反之亦然。

dd9391eead580b5f0acf8e1eb5c08aa7.png

其他

1.判别式

直线方程y=kx+m与双曲线方程联立后的,关于x的二次方程的判别式:

9857da003c9178bba6ea319d978d44ed.png

注:双曲线在联立方程时,首先要讨论b²-a²k²是否为0,如果为0,即直线斜率与渐近线斜率一致,则联立后关于x的方程为一次方程,不存在判别式问题。

2.一般弦长公式

双曲线一般弦长公式:

f383ef36194c29da3dee3508aa6257a5.png

上述公式推导过程从略,显然,当m=0时,公式退化为直径公式;m=±kc,即直线过焦点时,公式退化为焦点弦公式;当|k|=b/a时,弦长不存在(或无限长)。

文|高见远,转载请注明出处。

迎风格式是一种常用的数值解法,它可以用于求解初边值双曲型偏微分方程。下面以一维波动方程为例,演示如何使用迎风格式求解初边值问题。 考虑以下波动方程: $$u_{tt}=c^2u_{xx}, \ \ \ 0<x<L, \ \ \ t>0$$ 其中$c$为常数,$L$为区间长度。边界条件为: $$u(0,t)=u(L,t)=0, \ \ \ t>0$$ 初始条件为: $$u(x,0)=f(x), \ \ \ u_t(x,0)=g(x), \ \ \ 0\leq x\leq L$$ 迎风格式的数值解法如下: $$\frac{u_{i,j+1}-u_{i,j}}{\Delta t}=-c\frac{u_{i,j}-u_{i-1,j}}{\Delta x} \ \ \ \ (1)$$ $$\frac{u_{i,j+1}-u_{i,j}}{\Delta t}=-c\frac{u_{i+1,j}-u_{i,j}}{\Delta x} \ \ \ \ (2)$$ 其中$i$表示$x$轴上的网格点,$j$表示时间轴上的网格点,$\Delta x$$\Delta t$分别表示网格的空间步长时间步长。 将式(1)式(2)联立可得: $$u_{i,j+1}=\frac{1}{2}(u_{i-1,j}+u_{i+1,j})+\frac{\Delta t}{2\Delta x}c(u_{i+1,j}-u_{i-1,j})$$ 然后,可以使用Matlab代码来实现迎风格式的数值求解,代码如下: ```matlab % 定义求解区域 L = 1; % 区间长度 T = 1; % 时间长度 dx = 0.01; % 空间步长 dt = 0.001; % 时间步长 x = 0:dx:L; % 网格点 t = 0:dt:T; % 时间点 n = length(x)-2; % 内部网格点数 % 定义初值条件 u0 = sin(pi*x/L); v0 = zeros(1,length(x)); v0(2:end-1) = (u0(3:end) - u0(1:end-2))/(2*dx); % 定义常数 c = 1; % 进行数值求解 u = zeros(n,length(t)); u(:,1) = u0(2:end-1)'; u(:,2) = u(:,1) + v0(2:end-1)'*dt + 0.5*c^2*(dt/dx)^2*(u(2:end,:)-2*u(:,1)+u(1:end-1,:)); for j = 3:length(t) u(:,j) = u(:,j-1) + c^2*(dt/dx)^2*(u(3:end,j-1)-2*u(2:end-1,j-1)+u(1:end-2,j-1)) + ... 0.5*c^2*(dt/dx)^2*(u(3:end,j-2)-2*u(2:end-1,j-2)+u(1:end-2,j-2)) - ... (dt/dx)*c*(u(2:end-1,j-1)-u(1:end-2,j-1)) + ... 0.5*(dt/dx)*c*(u(2:end-1,j-2)-u(1:end-2,j-2)); end % 绘制解的图像 [X,T] = meshgrid(x,t); figure; mesh(X,T,[zeros(1,length(t));u;zeros(1,length(t))]); xlabel('x'); ylabel('t'); zlabel('u'); title('Solution of Wave Equation using Upwind Scheme'); ``` 运行以上Matlab代码即可得到偏微分方程的数值解,并且绘制出解的图像。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值