GTAV智能驾驶源码详解(一)——制作数据集

项目介绍

场景足够丰富,操作足够简单,有大量的交通工具和驾驶视角可供选择,游戏《Grand Theft Auto 5》是一个相对廉价且适合初级人工智能探索的自动驾驶试验场。

本AI(暂且称之为ScooterV2)借鉴了美国死宅Harrison Kinsley的Charles方案,只使用截图捕捉的画面以模拟摄像头数据作为AI的输入,并没有真实的智能驾驶所涉及的传感器与雷达数据。AI的决策过程目前只停留在CNN(AlexNet)对单张图片进行分类选择操作的阶段,尚未引入记忆,无法处理时间序列数据,因而相比于引入循环神经网络,目前的ScooterV2任然需要大量的数据进行fit训练(目前已完成的ScooterV3采用了强化学习,不需要任何训练数据集,但是由于驾驶场景过于复杂,尚未设计出完美的奖励机制,虽然降低了训练成本但是效果不如目前的V2版本)。

但由于机能限制和存储能力限制(其实是因为不想花太多训练时间,以及经常改方案、丢数据、丢模型),ScooterV2相对于Charles做了一些简化:

Charles的驾驶载体为民用车(GTA5抢劫神车Kuroma装甲轿车),视角为引擎盖视角(为了模拟真实的摄像头),设计目标为保证在当前道路上保持车道行驶的同时尽量避开障碍物(由于Kuroma装甲车速度很快,避开障碍物主要以变道的形式完成),且仿制出了许多真实的智能驾驶模块(前碰撞预警、障碍物探测、行人检测)。

我做的ScooterV2驶载体为摩托车(DoubleT),视角为第三人称视角(为了看到更大的场景区域,为了捕捉到的车道线斜率范围更大,期望以更小的样本量在更少的时间训练出足够好的效果),设计目标为在当前道路上保持车道行驶(使用Mod屏蔽了所有交通和行人),且没有设计其他模块(由于机能限制,串联其它CNN模块会成倍增加单帧处理时间,使得模型的测试效果不美观)。

模型的训练分为三个部分:

  1. 数据集制作:监督式学习&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值