首先定义点结构如下:
以下是引用片段:
  /* Vertex structure */
  typedef struct
  {
  double x, y;
  } vertex_t;
  本算法里所指的多边形,是指由一系列点序列组成的封闭简单多边形。它的首尾点可以是或不是同一个点(不强制要求首尾点是同一个点)。这样的多边形可以是任意形状的,包括多条边在一条绝对直线上。因此,定义多边形结构如下:
以下是引用片段:
  /* Vertex list structure – polygon */
  typedef struct
  {
  int num_vertices; /* Number of vertices in list */
  vertex_t *vertex; /* Vertex array pointer */
  } vertexlist_t;
  为加快判别速度,首先计算多边形的外包矩形(rect_t),判断点是否落在外包矩形内,只有满足落在外包矩形内的条件的点,才进入下一步的计算。为此,引入外包矩形结构rect_t和求点集合的外包矩形内的方法vertices_get_extent,代码如下:
以下是引用片段:
  /* bounding rectangle type */
  typedef struct
  {
  double min_x, min_y, max_x, max_y;
  } rect_t;
  /* gets extent of vertices */
  void vertices_get_extent (const vertex_t* vl, int np, /* in vertices */
  rect_t* rc /* out extent*/ )
  {
  int i;
  if (np > 0){
  rc->min_x = rc->max_x = vl[0].x; rc->min_y = rc->max_y = vl[0].y;
  }else{
  rc->min_x = rc->min_y = rc->max_x = rc->max_y = 0; /* =0 ? no vertices at all */
  }
  for(i=1; i 
  {
  if(vl[i].x < rc->min_x) rc->min_x = vl[i].x;
  if(vl[i].y < rc->min_y) rc->min_y = vl[i].y;
  if(vl[i].x > rc->max_x) rc->max_x = vl[i].x;
  if(vl[i].y > rc->max_y) rc->max_y = vl[i].y;
  }
  }
  当点满足落在多边形外包矩形内的条件,要进一步判断点(v)是否在多边形(vl:np)内。本程序采用射线法,由待测试点(v)水平引出一条射线B(v,w),计算B与vl边线的交点数目,记为c,根据奇内偶外原则(c为奇数说明v在vl内,否则v不在vl内)判断点是否在多边形内。
  具体原理就不多说。为计算线段间是否存在交点,引入下面的函数:
  (1)is_same判断2(p、q)个点是(1)否(0)在直线l(l_start,l_end)的同侧;
  (2)is_intersect用来判断2条线段(不是直线)s1、s2是(1)否(0)相交;
以下是引用片段:
  /* p, q is on the same of line l */
  static int is_same(const vertex_t* l_start, const vertex_t* l_end, /* line l */
  const vertex_t* p,
  const vertex_t* q)
  {
  double dx = l_end->x - l_start->x;
  double dy = l_end->y - l_start->y;
  double dx1= p->x - l_start->x;
  double dy1= p->y - l_start->y;
  double dx2= q->x - l_end->x;
  double dy2= q->y - l_end->y;
  return ((dx*dy1-dy*dx1)*(dx*dy2-dy*dx2) > 0? 1 : 0);
  }
  /* 2 line segments (s1, s2) are intersect? */
  static int is_intersect(const vertex_t* s1_start, const vertex_t* s1_end,
  const vertex_t* s2_start, const vertex_t* s2_end)
  {
  return (is_same(s1_start, s1_end, s2_start, s2_end)==0 &&
  is_same(s2_start, s2_end, s1_start, s1_end)==0)? 1: 0;
  }
  下面的函数pt_in_poly就是判断点(v)是(1)否(0)在多边形(vl:np)内的程序:
以下是引用片段:
  int pt_in_poly ( const vertex_t* vl, int np, /* polygon vl with np vertices */
  const vertex_t* v)
  {
  int i, j, k1, k2, c;
  rect_t rc;
  vertex_t w;
  if (np < 3)
  return 0;
  vertices_get_extent(vl, np, &rc);
  if (v->x < rc.min_x || v->x > rc.max_x || v->y < rc.min_y || v->y > rc.max_y)
  return 0;
  /* Set a horizontal beam l(*v, w) from v to the ultra right */
  w.x = rc.max_x + DBL_EPSILON;
  w.y = v->y;
  c = 0; /* Intersection points counter */
  for(i=0; i 
  {
  j = (i+1) % np;
  if(is_intersect(vl+i, vl+j, v, &w))
  {
  c++;
  }
  else if(vl[i].y==w.y)
  {
  k1 = (np+i-1)%np;
  while(k1!=i && vl[k1].y==w.y)
  k1 = (np+k1-1)%np;
  k2 = (i+1)%np;
  while(k2!=i && vl[k2].y==w.y)
  k2 = (k2+1)%np;
  if(k1 != k2 && is_same(v, &w, vl+k1, vl+k2)==0)
  c++;
  if(k2 <= i)
  break;
  i = k2;
  }
  }
  return c%2;
  }