机器学习 —— 概率图模型(学习:最大似然估计)

  最大似然估计的目标是获取模型中的参数。前提是模型已经是半成品,万事俱备只欠参数。此外,对样本要求独立同分布(参数就一套)

  上图中x ~ B(theta). 样本数为M.

  最大似然估计用似然函数作为优化目标,参数估计的过程为寻优过程。一般情况下认为,如果该参数使得数据发生的可能性最大,则该参数为最可能的一组参数。数学表达为下图:

1、充分统计

  充分统计是从样本映射到某个向量的一个公式。这个公式必须满足甲样本映射结果的和,必须与乙样本映射结果的和相同。而且这个必须成立,与总体分布的参数无关。例子:样本均值,样本方差。 

  这种求和一致性如果设计合理的情况下, 可以直接导出参数的 表达式

  比如在投硬币的统计模型中,T与H各自的数目就是充分统计量

  又比如在估计骰子的bias的统计模型中,我们只在乎各个数字出现的次数,而不在乎顺序。此时的充分统计量为骰子的数字

  在高斯模型中,可做以下分解:

  

  如果观测到x不同的值,则可断定,1,x,x^2,是充分统计量。

2、参数的极大似然估计

  在充分统计的条件下,参数的极大似然估计有着优雅的解析解。

3、贝叶斯网络中的极大似然估计

3.1、独立参数的贝叶斯网络

  在极大似然估计的观点中,参数是随机变量,其有着自己的模型。如果考虑一个概率图模型,那么在对参数进行估计时就必须考虑随机变量之间的交互关系。一个简单的未知参数贝叶斯网络如图所示:

  

  待估计的参数为theta_x,theta_y|x. 其中theta_x有两个取值,theta_y|x有四个取值。其解析表达式如下图:

  

  第二步使用了链式分解,第四步将参数进行分开表达。更一般的,有下式:

  

   第三部对调乘法,则后面简化为局部似然函数(某个随机变量的似然函数)。如果每个节点都有自己的独立参数,则最终的似然函数为局部似然函数的乘积。如果为表式CPD,则概率值就是参数值,那么又可简化为下式:

  

  故对于表式CPD的贝叶斯网络,theta_x|parents = x出现的次数/父节点总数(边际所有x的可能性)

3.2 共享参数贝叶斯网络

  共享参数贝叶斯网络往往描述一个转移过程。机器人直走有一定概率走偏,方向偏了继续直走,下次走偏的模式依旧是一定的。估计“走偏函数”的参数实际上是用的就是共享参数贝叶斯网络。

  共享参数贝叶斯网络不能直接看作独立参数贝叶斯网络的特例。因为其要多一条限制即参数均相等。如果依旧使用独立参数贝叶斯模型,则参数无法统一。

  

  上述模型中s~B(0,1),故theta共有4种:0-1,0-0,1-1,1-0.

  第二步中,总次数T被分解成上述四种情况。ij实际表达的是i->j。一个更复杂些的共享参数贝叶斯网络如图:

  

4、小技巧

  当样本不大时,使用简单而错误的网络效果可能比复杂但正确的网络好。原因是网络复杂了容易对数据进行过拟合。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值