matlab中cnn结果分析,CNN混淆矩阵--分析CNN的输出结果

本文详细介绍了混淆矩阵的概念,并通过MATLAB和Python代码展示了如何生成及绘制混淆矩阵,用于分析CNN模型的预测结果。强调了混淆矩阵在评估分类模型性能中的重要性。
摘要由CSDN通过智能技术生成

混淆矩阵(Confusion Matrix)

混淆矩阵的每一列代表了预测类别,每一列的总数表示预测为该类别的数据的数目;每一行代表了数据的真实归属类别,每一行的数据总数表示该类别的数据实例的数目。每一列中的数值表示真实数据被预测为该类的数目:如下图,第一行第一列中的43表示有43个实际归属第一类的实例被预测为第一类,同理,第一行第二列的2表示有2个实际归属为第一类的实例被错误预测为第二类。 --《百度百科》

790e53fdda03

屏幕快照 2019-08-04 下午4.42.22.png

这是一种很好的分析模型输出结果的方法。

790e53fdda03

屏幕快照 2019-08-04 下午4.49.01.png

小总结

混淆矩阵有3个维度的信息,虽然是2维矩阵,但是颜色本身也是一个维度。

画出来的和上面百科提供的解释是一致的。

显然,主对角线上的数字表示网络的输出和真实的值一样的个数,即网络对了。

主对角线之外就是网络犯的错,也就是让网络感到困惑/混淆的地方。

790e53fdda03

屏幕快照 2019-08-04 下午4.52.04.png

也即,混淆矩阵的名称来源。

手动生成混淆矩阵

sta

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值