题文:
见:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=944(紫书p2001)
题解:区间dp,可以设dp[l][r]表示区间i到j的最小花费,所以 dp[l][r]=min(dp[l][r],DP(l,k)+DP(k,r)+cut[r]-cut[l]);k为一个断点,cut[r]-cut[l]为第一次切的花费,转移也非常显然,不过注意,这个题目必须要记忆化搜索,因为要先处理出子状态。
代码:
#include<cstring> #include<stdio.h> #include<algorithm> #include<stdlib.h> #include<iostream> #define inf 1<<30 #define MAXN 1010 #define ll long long using namespace std; int dp[MAXN][MAXN],cut[MAXN]; int n,len; int DP(int l,int r){ if(dp[l][r]!=-1) return dp[l][r]; if(l+1==r) return 0; dp[l][r]=inf; for(int k=l+1;k<r;k++){ dp[l][r]=min(dp[l][r],DP(l,k)+DP(k,r)+cut[r]-cut[l]); } return dp[l][r]; } int main(){ while(1){ memset(dp,-1,sizeof(dp)); memset(cut,0,sizeof(cut)); scanf("%d",&len); if(!len) break; scanf("%d",&n); for(int i=1;i<=n;i++){ int x;scanf("%d",&x); cut[i]=x; } cut[0]=0;cut[n+1]=len; printf("The minimum cutting is %d.\n",DP(0,n+1)); } }