我自己对DP的理解,就是对状态的定义和动态规划的方向。比如,d[i]表示长度为i的花费最少。然后,再来一个递推公式表示状态的变化,如dp[i]=a[i]+max(dp[i],dp[j]+x)。
You have to cut a wood stick into pieces. The most affordable company, The Analog Cutting Machinery,
Inc. (ACM), charges money according to the length of the stick being cut. Their procedure of work
requires that they only make one cut at a time.
It is easy to notice that different selections in the order of cutting can led to different prices. For
example, consider a stick of length 10 meters that has to be cut at 2, 4 and 7 meters from one end.
There are several choices. One can be cutting first at 2, then at 4, then at 7. This leads to a price
of 10 + 8 + 6 = 24 because the first stick was of 10 meters, the resulting of 8 and the last one of 6.
Another choice could be cutting at 4, then at 2, then at 7. This would lead to a price of 10 + 4 + 6 =
20, which is a better price.
Your boss trusts your computer abilities to find out the minimum cost for cutting a given stick.
Input
The input will consist of several input cases. The first line of each test case will contain a positive
number l that represents the length of the stick to be cut. You can assume l < 1000. The next line will
contain the number n (n < 50) of cuts to be made.
The next line consists of n positive numbers ci (0 < ci < l) representing the places where the cuts
have to be done, given in strictly increasing order.
An input case with l = 0 will represent the end of the input.
Output
You have to print the cost of the optimal solution of the cutting problem, that is the minimum cost of
cutting the given stick. Format the output as shown below.
Sample Input
100
3
25 50 75
10
4
4 5 7 8
0
Sample Output
The minimum cutting is 200.
The minimum cutting is 22.
题目意思是:有一根棍子,假如是100长的棍子,你把他砍断就要花费100,给你几个可以砍断的点,问你全部砍完后需要的最小价值。
题解:http://blog.csdn.net/weizhuwyzc000/article/details/46848951
1.记忆化搜索:(递归回溯法)
#include<bits/stdc++.h>
using namespace std;
const int INF = 2000000000;
int n,l,a[55],d[55][55];
int dp(int i,int j) {
int& ans = d[i][j];
if(ans!=-1) return ans;
ans = INF;
for(int k=i+1;k<j;k++) {
ans = min(ans,dp(i,k) + dp(k,j) + a[j] - a[i]);
}
return ans;
}
int main() {
while(~scanf("%d",&l)&&l) {
scanf("%d",&n);
memset(d,-1,sizeof(d));//初始化特殊值
for(int i=0;i<=n;i++) d[i][i+1] = 0; //初始化边界
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
a[n+1] = l; a[0] = 0;
printf("The minimum cutting is %d.\n",dp(0,n+1));
}
return 0;
}
递推关系:填表法
#include<bits/stdc++.h>
using namespace std;
const int INF = 2000000000;
int n,l,a[55],d[55][55];
int main() {
while(~scanf("%d",&l)&&l) {
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
a[n+1] = l; a[0] = 0;
for(int len=1;len<=n+1;len++) { //按照木棍长度从小到大递推
for(int i=0;i<=n;i++) {//i + len 就是j
if(i+len > n+1) break;
d[i][i+len] = (len == 1 ? 0 : INF);
for(int k=i+1;k<i+len;k++) { //寻找切割点
d[i][i+len] = min(d[i][i+len],d[i][k] + d[k][i+len] + a[i+len] - a[i]);
}
}
}
printf("The minimum cutting is %d.\n",d[0][n+1]);
}
return 0;
}