赫夫曼树:
如果有n个权值{w1,w2,w3....},试构造一棵具有
n个叶子节点的二叉树,每一个叶子节点带权为wi。则当中
带权路径长度最小的二叉树称为最优二叉树或者叫赫夫曼树。
构造赫夫曼树:
如果有n个权值,则构造出的赫夫曼树有n个叶子节点,n个权值分别设置为w1,w2,....wn,则赫夫曼树的构造规则为:
1.将w1,w2...看成是有n棵树的森林;
2.在森林中选择两个根节点的权值最小的树合并,作为一棵新树的左右子树,且新树的根节点权值为其左右子树根节点权值之和;
3.从森林中删除选取的两棵树,并将新树增加森林。
4.反复2、3步,直到森林中仅仅剩一棵树为止。该树即为所求得的赫夫曼树。
实现:
以数组形式存储赫夫曼树节点,节点形态:
/**************************************************
构造赫夫曼树
by Rowandjj
2014/6/2
**************************************************/
#include<IOSTREAM>
using namespace std;
#define UINT_MAX 0xffffffff
typedef struct _BITREE_//二叉树
{
int data;//存放节点的圈中
struct _BITREE_ *lChild;
struct _BITREE_ *rChild;
}Bitree,*pBitree;
typedef struct _HUFFMANTREE_//赫夫曼树
{
unsigned int weight;
unsigned int parent;
unsigned int lChild;
unsigned int rChild;
}HuffmanTree,*pHuffmanTree;
int iCount = 0;//叶子节点数
int iIndex = 1;//索引
//-----------------------------------------
void CreateBiTree(pBitree* pBitreeTemp);//创建二叉树
void CreatreArray(pHuffmanTree& pHuffmanTreeTemp,pBitree pBitreeTemp);//将二叉树每一个节点的值作为权放进赫夫曼树中
pHuffmanTree InitHuffmanTree();//初始化赫夫曼树,
void CreateHuffmanTree(pHuffmanTree& pHuffmanTreeTemp);//创建赫夫曼树
int GetNode(pHuffmanTree& pHuffmanTreeTemp,int i);//获取赫夫曼树中位置0-i中值最小的节点的索引
void SelectNode(pHuffmanTree& pHuffmanTreeTemp,int i,int *m,int *n);//选择赫夫曼树数组中值最小的两个节点的索引(不包括已有父节点的节点)
void DestroyTree(pBitree* pBitreeTemp);
void DestroyHuffmanTree(pHuffmanTree& pHuffmanTreeTemp);
int main()
{
int i;
//创建二叉树
pBitree pBitreeTemp;
CreateBiTree(&pBitreeTemp);
//初始化赫夫曼树
pHuffmanTree pHuffmanTreeTemp = InitHuffmanTree();
//初始化赫夫曼树的叶子节点的权
CreatreArray(pHuffmanTreeTemp,pBitreeTemp);
for(i = 1; i <= iCount ; i++)
{
cout<<pHuffmanTreeTemp[i].weight<<" ";
}
cout<<endl;
//创建赫夫曼树
CreateHuffmanTree(pHuffmanTreeTemp);
for(i = 1; i <= 2*iCount-1 ; i++)
{
cout<<pHuffmanTreeTemp[i].weight<<" ";
}
cout<<endl;
DestroyTree(&pBitreeTemp);
DestroyHuffmanTree(pHuffmanTreeTemp);
return 0;
}
void CreateBiTree(pBitree* pBitreeTemp)
{
int data;
cin>>data;
if(data == -1)
{
return;
}
*pBitreeTemp = (pBitree)malloc(sizeof(Bitree));
if(*pBitreeTemp == NULL)
{
return;
}
(*pBitreeTemp)->data = data;
(*pBitreeTemp)->lChild = NULL;
(*pBitreeTemp)->rChild = NULL;
CreateBiTree(&(*pBitreeTemp)->lChild);
CreateBiTree(&(*pBitreeTemp)->rChild);
iCount++;
}
pHuffmanTree InitHuffmanTree()
{
int num = 2*iCount - 1;//赫夫曼树的节点总数为:叶子节点数*2-1
pHuffmanTree pTemp = (pHuffmanTree)malloc(sizeof(HuffmanTree)*(num+1));//0位不存
if(pTemp == NULL)
{
return NULL;
}
for(int i = 0; i <= num; i++)
{
pTemp[i].lChild = 0;
pTemp[i].rChild = 0;
pTemp[i].parent = 0;
pTemp[i].weight = 0;
}
return pTemp;
}
void CreatreArray(pHuffmanTree& pHuffmanTreeTemp,pBitree pBitreeTemp)
{
if(pBitreeTemp == NULL || pHuffmanTreeTemp == NULL)
{
return;
}
pHuffmanTreeTemp[iIndex].weight = pBitreeTemp->data;
iIndex++;
CreatreArray(pHuffmanTreeTemp,pBitreeTemp->lChild);
CreatreArray(pHuffmanTreeTemp,pBitreeTemp->rChild);
}
int GetNode(pHuffmanTree& pHuffmanTreeTemp,int i)
{
int min = UINT_MAX;
int flag;
for(int j = 1; j <= i; j++)
{
if(pHuffmanTreeTemp[j].weight < min && pHuffmanTreeTemp[j].parent == 0)//已有父节点的不算
{
min = pHuffmanTreeTemp[j].weight;
flag = j;
}
}
pHuffmanTreeTemp[flag].parent = 1;//防止两次调用获取的索引同样
return flag;
}
void SelectNode(pHuffmanTree& pHuffmanTreeTemp,int i,int *m,int *n)//m为序号小的那个
{
*m = GetNode(pHuffmanTreeTemp,i);
*n = GetNode(pHuffmanTreeTemp,i);
int t;
if(*m > *n)
{
t = *m;
*m = *n;
*n = t;
}
}
void CreateHuffmanTree(pHuffmanTree& pHuffmanTreeTemp)
{
if(pHuffmanTreeTemp == NULL)
{
return;
}
int m = 0,n = 0;
for(int i = iCount+1;i <= 2*iCount-1; i++)
{
SelectNode(pHuffmanTreeTemp,i-1,&m,&n);
pHuffmanTreeTemp[m].parent = pHuffmanTreeTemp[n].parent = i;
//构造两个最小权重的节点的父节点
pHuffmanTreeTemp[i].lChild = m;
pHuffmanTreeTemp[i].rChild = n;
pHuffmanTreeTemp[i].weight = pHuffmanTreeTemp[m].weight+pHuffmanTreeTemp[n].weight;
}
}
void DestroyTree(pBitree* pBitreeTemp)
{
if(*pBitreeTemp == NULL)
{
return;
}
if((*pBitreeTemp)->lChild)
{
DestroyTree(&(*pBitreeTemp)->lChild);
}
if((*pBitreeTemp)->rChild)
{
DestroyTree(&(*pBitreeTemp)->rChild);
}
free(*pBitreeTemp);
*pBitreeTemp = NULL;
}
void DestroyHuffmanTree(pHuffmanTree& pHuffmanTreeTemp)
{
if(pHuffmanTreeTemp)
{
free(pHuffmanTreeTemp);
}
pHuffmanTreeTemp = NULL;
}
測试:
图解构造过程:
1.首先将二叉树中的节点所有存到代表赫夫曼树的数组中。其余位置为0:
2.循环遍历该数组。每次找到最小权重的两个节点。之和作为其父节点的权重
3.循环一遍后。便得到赫夫曼树: