重建行程(最短的欧拉路径)Reconstruct Itinerary

本文介绍了一种使用Map+DFS的方法来解决机票行程重构的问题。该问题要求从一系列机票信息中,找出从JFK机场出发的完整行程路线,并确保行程顺序在字典序上是最小的。文章详细解释了如何将问题转化为寻找有向图中的欧拉路径问题,并给出了具体的实现代码。
摘要由CSDN通过智能技术生成

问题:

Given a list of airline tickets represented by pairs of departure and arrival airports [from, to], reconstruct the itinerary in order. All of the tickets belong to a man who departs from JFK. Thus, the itinerary must begin with JFK.

Note:

  1. If there are multiple valid itineraries, you should return the itinerary that has the smallest lexical order when read as a single string. For example, the itinerary ["JFK", "LGA"] has a smaller lexical order than ["JFK", "LGB"].
  2. All airports are represented by three capital letters (IATA code).
  3. You may assume all tickets form at least one valid itinerary.

Example 1:
tickets = [["MUC", "LHR"], ["JFK", "MUC"], ["SFO", "SJC"], ["LHR", "SFO"]]
Return ["JFK", "MUC", "LHR", "SFO", "SJC"].

Example 2:
tickets = [["JFK","SFO"],["JFK","ATL"],["SFO","ATL"],["ATL","JFK"],["ATL","SFO"]]
Return ["JFK","ATL","JFK","SFO","ATL","SFO"].
Another possible reconstruction is ["JFK","SFO","ATL","JFK","ATL","SFO"]. But it is larger in lexical order.

解决:

① 使用Map+DFS。

定义:
   欧拉回路:从图的某一个顶点出发,图中每条边走且仅走一次,最后回到出发点;如果这样的回路存在,则称之为欧拉回路。 
   欧拉路径:从图的某一个顶点出发,图中每条边走且仅走一次,最后到达某一个点;如果这样的路径存在,则称之为欧拉路径。

判断:

     无向图欧拉回路判断:所有顶点的度数都为偶数。

     有向图欧拉回路判断:所有顶点的出度与入读相等。

     无向图欧拉路径判断: 至多有两个顶点的度数为奇数,其他顶点的度数为偶数。

     有向图欧拉路径判断: 至多有两个顶点的入度和出度绝对值差1(若有两个这样的顶点,则必须其中一个出度大于入度,另一个入度大于出度),其他顶点的入度与出度相等。

所有机场都是顶点,票据是有向边。 然后所有这些票形成一个有向图。

因为我们知道欧拉路径存在,所以图必须是欧拉。

因此,从“JFK”开始,我们可以应用Hierholzer算法在图中找到欧拉路径,这是一个有效的重构。

由于问题要求词法顺序最小的解决方案,我们可以把邻居放在一个小堆里。 通过这种方式,我们总是先访问最小的邻居

class Solution { //10ms
    Map<String,PriorityQueue<String>> map = new HashMap<>();
    List<String> res = new ArrayList<>();
    public List<String> findItinerary(String[][] tickets) {
        for (String[] ticket : tickets){
            if (! map.containsKey(ticket[0])){
                PriorityQueue<String> queue = new PriorityQueue<>();
                map.put(ticket[0],queue);
            }
            map.get(ticket[0]).offer(ticket[1]);
        }
        dfs("JFK");
        return res;
    }
    public void dfs(String s){
        PriorityQueue<String> queue = map.get(s);
        while(queue != null && ! queue.isEmpty()){
            dfs(queue.poll());
        }
        res.add(0,s);
    }

转载于:https://my.oschina.net/liyurong/blog/1594462

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值