from sklearn.datasets import make_classification创建分类数据集

该博客介绍了如何利用sklearn.datasets的make_classification函数生成用于分类任务的数据集,并提供了官方文档链接及示例。
摘要由CSDN通过智能技术生成

        make_classification创建用于分类的数据集,官方文档

例子:

### 创建模型
def create_model():
    
    # 生成数据
    from sklearn.datasets import make_classification
    X, y = make_classification(n_samples=10000,        # 样本个数
                               n_features=25,          # 特征个数
                               n_informative=3,        # 有效特征个数
                               n_redundant=2,          # 冗余特征个数(有效特征的随机组合)
                               n_repeated=0,           # 重复特征个数(有效特征和冗余特征的随机组合)
                               n_classes=3,            # 样本类别
                               n_clusters_pe
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值