最优化局部极小点的条件(二)

 回忆一下关于 元实值函数的 的求导问题,函数 的一阶导数

                                                


函数 的梯度 正好是导数 的转置,即;函数 的二阶导数,也称为hessian矩阵,可表示为:
 
                                               
 

对于向量 , 和约束集中的某个点 ,如果存在一个实数 使得对于所有 仍然在约束集内,即 ,则称 处的可行方向!


元实值函数 处的可行方向,则函数 沿方向 的方向导数可表示为

                                               
                          
这也是一个实值函数,如果 ,那么方向导数 表示的是函数 的值在 处沿方向 的增长率。为了计算方向导数,假定 已知,这样就变成了关于的函数,有

                                             
      

应用链式法则,可得

                   

由此可见,当 是一个单位向量( )时,函数f的值在 处沿方向 的增长率可以用内积 表示。

一阶必要条件:多元实值函数 在约束集 上一阶连续可微,即 ,约束集 的子集。如果是函数 上的局部极小点,则对于 处的任意可行方向 ,都有

                                                  

成立。

推论 :局部极小点位于约束集内部时的一阶必要条件:多元实值函数 在约束集 上一阶连续可微,即 ,约束集 的子集,如果 是函数 上的局部极小点,且是 的内点,则有
 
                                                 

成立。

局部极小点的二阶必要条件:多元实值函数 在约束集 上二阶连续可微,即, 约束集 的子集 , 如果 是函数 上的局部极小点 , 处的一个可行方向,且 ,则有
 
                                                

其中,H为函数f的hessian矩阵。

推论:局部极小点位于约束集内部时的二阶必要条件: 多元实值函数 在约束集 上二阶连续可微,即, 约束集 的子集 , 如果 是函数 上的局部极小点,且是 的内点,则有

                                                
                       
hessian矩阵 半正定,也就是说,对于所有的向量 ,都有

                                                

局部极小点的二阶充分条件(局部极小点为内点):多元实值函数 在约束集上二阶连续可微,即 是约束集的一个内点,如果同时满足

1    

2   

是函数 的一个严格局部极小点

-------------------------------------------------------------------------------

转载请注明出处 博客园 刺猬的温驯 

本文链接 http://www.cnblogs.com/chenying99/p/5081426.html  

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值