GBDT调参指南

本文详细介绍了GBDT的参数调优,包括boosting框架参数如n_estimators、learning_rate、subsample等,并讨论了分类与回归任务中损失函数的选择。在弱学习器参数部分,重点讲解了max_depth、min_samples_split、min_samples_leaf等决策树参数的影响。调参过程建议从迭代次数和学习率开始,逐步调整决策树相关参数,以达到最佳模型性能。
摘要由CSDN通过智能技术生成

GBDT分类器和回归器的大部分参数都是相同的,除了损失函数的选项有些不同,因此下面我们统一说明各个参数的意义以及在什么情境下做什么调整方法。

一、GBDT的boosting框架参数

1.n_estimators:代表弱学习器的最大个数,即最多训练多少棵树。这个值过大导致过拟合,过小导致欠拟合.默认值为100.

2.learning_rate:每个弱学习器都有一个权重参数,默认值0.1,取值范围0-1。 learning_rate和n_estimators同时决定着模型的拟合效果,因此要同时调整,建议从一个小一点的学习率开始。

fn(x)=fn-1(x)+l_r*T(n,x)
#即本轮的学习器等于本轮以前的学习器加上学习率乘以本轮得到的弱学习器
复制代码

3.subsample:子采样比例,默认1.0,是不放回的采样,与随机森林的有放回采样不一样。如果为1.0,表示每轮采用全部数据生成决策树,容易过拟合,方差容易比较大。但是如果过小,容易造成高偏差,所以这个值需要这种,建议0.5-0.8之间。

4.init:初始学习器的值,在有一定先验知识的情况下可以自己设定,。但是一般不用。

5.loss:损失函数的选择,对于分类和回归是有区别的。

分类:可选项有{'deviance','exponential'},"devianc

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值