gbdt调参

参考:刘建平的文章,结合gridsearch试着调参找出最优模型。

http://www.cnblogs.com/pinard/category/894692.html


评估参数:

虽然 MSE 常用于机器学习,但它既不是唯一实用的损失函数,也不是适用于所有情形的最佳损失函数。

MSE: Mean Squared Error
均方误差是指参数估计值与参数真值之差平方的期望值;
MSE可以评价数据的变化程度, MSE的值越小,说明预测模型描述实验数据具有更好的精确度

MAE :Mean Absolute Error
平均绝对误差是绝对误差的平均值
平均绝对误差能更好地反映预测值误差的实际情况.

gbdt调参参考:

https://www.cnblogs.com/fisherinbox/p/6625958.html

方法一:

    # n_estimatorslearning_rate一起调,先调固定learning_rate0.1,子采样为0.8,先调出n_estimators
    # 固定以上两者,对决策树最大深度max_depth和内部节点再划分所需最小样本数min_samples_split进行网格搜索。
    # 先定下决策树的深度,min_samples_split还需要跟其它的一起调,现在与叶子节点最少样本数min_samples_leaf一起调
    # 固定以上,现在我们再对最大特征数max_features进行网格搜索
    # 然后调节最小子采样数est__subsample np.linspace(0.5, 1, 10)
    # 基本已经得到我们所有调优的参数结果。再减半步长,最大迭代次数加倍来增加我们模型的泛化能力。

    # 目的:为了增加模型泛化能力,为防止过拟合而减半步长,最大迭代次数加倍,同时减小了子采样的比例,从而减少了训练集的拟合程度。

方法二:
    # 1.首先从步长和迭代次数入手,选择一个较大的步长,和较小的迭代次数。可以将步长设置为0.1,迭代次数从20 - 100网格搜索。
    # 2.找到最合适的迭代次数,对决策树最大深度max_depth和内部节点再划分所需最少样本数min_samples_split进行网格搜索,最大深度3 - 15,样本100 - 800
    # 3.找到一个最大深度,由于min_samples_split还与叶子结点最少样本数min_samples_leaf有关,所以让这两个参数一起网格搜索调参。
    # 4.找到最佳min_samples_splitmin_samples_leaf,接下来对最大特征数max_features调参, 可以使用百分数或者绝对数来进行网格搜索.
    #5.接下来对子采样比例进行网格搜索。
    #6.现在基本上得到了所有的参数,现在就调小步长,调大迭代次数来增大模型的泛化能力。可以多尝试几次。

参数解释:

    n_estimators:弱学习器的最大迭代次数,或者说最大的弱学习器的个数。
    n_estimators太小,容易欠拟合,n_estimators太大,又容易过拟合,默认是100
    在实际调参的过程中,我们常常将n_estimatorslearning_rate一起考虑。
    
    learning_rate: 即每个弱学习器的权重缩减系数νν,也称作步长.
    较小的νν意味着我们需要更多的弱学习器的迭代次数。通常我们用步长和迭代最大次数一起来决定算法的拟合效果,
    可以从一个小一点的νν开始调参,默认是1
    
     subsample: 子采样,取值为(0,1]。注意这里的子采样和随机森林不一样,随机森林使用的是放回抽样,而这里是不放回抽样。
     如果取值为1,则全部样本都使用,等于没有使用子采样。
     如果取值小于1,则只有一部分样本会去做GBDT的决策树拟合。
     选择小于1的比例可以减少方差,即防止过拟合,但是会增加样本拟合的偏差,因此取值不能太低。
     推荐在[0.5, 0.8]之间,默认是1.0,即不使用子采样。
     

     loss: 即我们GBDT算法中的损失函数。分类模型和回归模型的损失函数是不一样的。对于分类模型,有对数似然损失函数"deviance"和指数损失函数"exponential"两者输入选择。般来说,推荐使用默认的"deviance"。它对二元分离和多元分类各自都有比较好的优化。而指数损失函数等于把我们带到了Adaboost算法。对于回归模型,有均方差"ls", 绝对损失"lad", Huber损失"huber"和分位数损失“quantile”
            默认是均方差"ls"。一般来说,如果数据的噪音点不多,用默认的均方差"ls"比较好。
            如果是噪音点较多,则推荐用抗噪音的损失函数"huber"

            而如果我们需要对训练集进行分段预测的时候,则采用“quantile”

     alpha:这个参数只有GradientBoostingRegressor有,当我们使用Huber损失"huber"和分位数损失“quantile”时,需要指定分位数的值。默认是0.9,如果噪音点较多,可以适当降低这个分位数的值。
     
1) 划分时考虑的最大特征数max_features: 可以使用很多种类型的值,默认是"None",意味着划分时考虑所有的特征数;如果是"log2"意味着划分时最多考虑log2Nlog2N个特征;如果是"sqrt"或者"auto"意味着划分时最多考虑N−−√N个特征。如果是整数,代表考虑的特征绝对数。如果是浮点数,代表考虑特征百分比,即考虑(百分比xN)取整后的特征数。其中N为样本总特征数。一般来说,如果样本特征数不多,比如小于50,我们用默认的"None"就可以了,如果特征数非常多,我们可以灵活使用刚才描述的其他取值来控制划分时考虑的最大特征数,以控制决策树的生成时间。

2) 决策树最大深度max_depth: 一般来说,数据少或者特征少的时候可以不管这个值。如果模型样本量多,特征也多的情况下,推荐限制这个最大深度,具体的取值取决于数据的分布。常用的可以取值10-100之间。

3) 内部节点再划分所需最小样本数min_samples_split: 这个值限制了子树继续划分的条件,如果某节点的样本数少于min_samples_split,则不会继续再尝试选择最优特征来进行划分。 默认是2.如果样本量不大,不需要管这个值。如果样本量数量级非常大,则推荐增大这个值。

4) 叶子节点最少样本数min_samples_leaf: 这个值限制了叶子节点最少的样本数,如果某叶子节点数目小于样本数,则会和兄弟节点一起被剪枝。 默认是1,可以输入最少的样本数的整数,或者最少样本数占样本总数的百分比。如果样本量不大,不需要管这个值。如果样本量数量级非常大,则推荐增大这个值。

5)叶子节点最小的样本权重和min_weight_fraction_leaf:这个值限制了叶子节点所有样本权重和的最小值,如果小于这个值,则会和兄弟节点一起被剪枝。 默认是0,就是不考虑权重问题。一般来说,如果我们有较多样本有缺失值,或者分类树样本的分布类别偏差很大,就会引入样本权重,这时我们就要注意这个值了。

6) 最大叶子节点数max_leaf_nodes: 通过限制最大叶子节点数,可以防止过拟合,默认是"None”,即不限制最大的叶子节点数。如果加了限制,算法会建立在最大叶子节点数内最优的决策树。如果特征不多,可以不考虑这个值,但是如果特征分成多的话,可以加以限制,具体的值可以通过交叉验证得到。

7) 节点划分最小不纯度min_impurity_split:  这个值限制了决策树的增长,如果某节点的不纯度(基于基尼系数,均方差)小于这个阈值,则该节点不再生成子节点。即为叶子节点 。一般不推荐改动默认值1e-7

 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值