函数各种性质大汇总

$\color{green}{函数各种性质的给出方式}$

提起高中阶段的函数知识,学生肯定五味杂陈,总结函数的各种性质的给出方式,可以帮助学生更好的把握函数的性质。以下内容试着对各种性质的常见的给出方式做以总结:

  • $\color{red}{函数定义域}$

1、直接给出(限定定义域);如函数\(f(x),x\in D\)
2、以函数解析式的形式给出(自然定义域);如已知函数\(f(x)=lg\cfrac{x+2}{x-2}\),求函数\(f(\cfrac{x}{2})+f(\cfrac{2}{x})\)的定义域
3、以图像的形式给出(读图);

  • $\color{red}{函数值域}$

1、直接给出;如函数\(f(x)\in D\)
2、以函数解析式的形式给出;利用求值域的方法(8、9种之多)求解
3、以图像的形式给出(读图);

  • $\color{red}{函数单调性}$

1、直接给出;如函数在区间\([a,b]\)单调递增

2、以定义式给出;如单调递增可以给出\(\forall x_1,x_2\in D,x_1<x_2,f(x_1)<f(x_2)\)

3、以定义的变形形式给出;如单调递增 \(\forall x_1,x_2\in D,(x_1-x_2)\cdot(f(x_1)-f(x_2))>0,\)或者\(\cfrac{f(x_1)- f(x_2)}{x_1-x_2}>0,\)或者\(\cfrac{f(x_1)+ f(x_2)}{x_1+x_2}>0\)

注意:\(\cfrac{f(x_1)+ f(x_2)}{x_1+x_2}>0\) ,这种表达形式经常和奇函数联系在一起使用,如由于\(x_2\in[-1,1]\),则\(-x_2\in[-1,1]\),故用\(-x_2\)替换\(x_2\),得到\(\cfrac{f(x_1)+ f(-x_2)}{x_1-x_2}>0\)\(\cfrac{f(x_1)- f(x_2)}{x_1-x_2}>0\),所以函数\(f(x)\)是增函数。

4、 以图像的形式给出(给出\(f(x)\)图像或者\(f'(x)\)的图像,要会读斜率)

5、函数单调性的性质应用,如函数\(f(x)、g(x)\)是增(减)函数,则\(f(x)+g(x)\)为增(减)函数;若能再增加条件,如已知函数\(f(x)、g(x)\)是增(减)函数,同时又已知\(f(x)>0,g(x)>0\),则有\(f(x)\cdot g(x)\)是增(减)函数;已知函数\(f(x)、g(x)\)是增(减)函数,同时又已知\(f(x)<0,g(x)<0\),则有\(f(x)\cdot g(x)\)是减(增)函数;

6、以复合函数的形式给出单调性;以分段函数的形式给出单调性

7、以赋值法的形式给出单调性;如定义在\(R\)上的函数\(f(x)\)满足\(f(x+y)=f(x)+f(y)\),且\(x>0\)时,\(f(x)<0\),判定函数单调性。

7、以导数的形式给出,如函数在区间\([a,b]\)满足\(f'(x)\ge0\)(只在有限个点处使得\(f'(x)=0\))

8、以积函数的形式给出,如\((x-1) \cdot f'(x)>0\),或者\((x^2-3x+2)\cdot f'(x)>0\),解不等式转化为上面的类型。

9、以函数结合导数的形式给出(更难些),如\(xf'(x)-f(x)<0\), 构造\(g(x)=\cfrac{f(x)}{x}\),如\(xf'(x)+f(x)<0\), 构造\(g(x)=x\cdot f(x)\)

备注:有时候可能需要先做适当的变形,然后再构造函数,如已知函数\(f(x)\)的定义域为\(R\),且\(f'(x)+f(x)=2xe^{-x}\),若\(f(0)=1\),则函数\(f(x)\)是多少?

解析:由题目\(f'(x)+f(x)=2xe^{-x}\)可知两边同时乘以\(e^x\)得到,\(e^xf'(x)+e^xf(x)=2x\),令\(g(x)=e^xf(x)\),则\(g'(x)=e^xf'(x)+e^xf(x)=2x\),故\(g(x)=e^xf(x)=\int 2x\;\;dx=x^2+C\),由\(f(0)=1\),得到\(g(0)=1=0^2+C\),故\(C=1\),所以\(e^xf(x)=x^2+1\),即函数\(f(x)=\cfrac{x^2+1}{e^x}\).

构造函数\(g(x)=f(x)-\cfrac{1}{2}x^2\),从简原则,我们不需要构造\(\cfrac{1}{2}x^2+C\)

则在\((0,+\infty)\)\(g'(x)=f'(x)-x<0\)\(g(x)\)单调递减,

【引例】\(f(x)\)是偶函数,当\(x\in(-\infty,0)\)时,\(f(x)+xf'(x)<0\)成立,比较\(2f(2),3f(3),5f(5)\)的大小。

分析:构造\(g(x)=x\cdot f(x)\)\(g(x)\)为奇函数,当\(x\in(-\infty,0)\)时,\(f(x)+xf'(x)<0\)成立,则\(g'(x)=f(x)+xf'(x)<0\),故由单调和奇偶性可知\(g(x)\)\((0,+\infty)\)上单调递减。大小比较就容易了。

10、同时结合函数的凹凸性给出,如\(f(\cfrac{x_1+x_2}{2})>\cfrac{f(x_1)+f(x_2)}{2}\),仅仅函数的凹凸性不能确定单调性。

函数单调递增或递减的五种代表形式:逐渐增大型,逐渐减少型,恒定不变型,先慢后快型,先快后慢型。

  • $\color{red}{函数奇偶性}$

1、直接给出;如函数在某区间是奇函数

2、以定义式给出;如\(\forall x \in D,f(-x)= - f(x)\),则它是奇函数。

3、定义的变形式给出;如\(\forall x \in D,f(-x)+ f(x)=0\)\(\cfrac{f(-x)}{f(x)}=\pm 1(f(x)\neq0)\).

4、以图像的形式给出;比如某函数图像关于原点对称,某函数图像关于\(y\)轴对称。

5、在公共定义域上,\(“奇+奇”\)是奇,\(“奇-奇”\)是奇,\(“奇\cdot奇”\)是偶,\(“奇÷奇”\)是偶;

\(“偶+偶”\)是偶,\(“偶-偶”\)是偶,\(“偶\cdot 偶”\)是偶,\(“偶÷偶”\)是偶;

\(“奇\cdot偶”\)是奇,\(“奇÷偶”\)是奇;

\(f(x)\)为偶函数,则可知函数\(g(x)=xf(x)\)为奇函数。

6、以图像变换为依托给出,如\(f(x-1)\)的对称轴是\(x=1\),则可知\(f(x)\)的对称轴是\(y\)轴,即\(f(x)\)是偶函数;

7、以周期性和对称性结合给出奇偶性;如,已知函数\(f(x)\)的周期是2,且满足\(f(2+x)=f(-x)\),具体变形见下面

8、结合赋值法给出;已知函数\(f(x)\)满足\(f(1)=\cfrac{1}{2}\),且\(f(x+y)+f(x-y)=2f(x)f(y)\),令\(x=y=0\),则有\(2f(0)=2f^2(0)\),得到\(f(0)=0或f(0)=1\);再令\(x=1,y=0\),则有\(2f(1)=2f(1)f(0)\),得到\(f(0)=1\);又题目已知\(f(1)=\cfrac{1}{2}\)

若令\(x=0\),则得到\(f(y)+f(-y)=2f(0)f(y)=2f(y)\),所以\(f(-y)=f(y)\),可知函数是偶函数。

9、构造函数\(g(x)=f(x)-\cfrac{1}{2}x^2\),从简原则,我们不需要构造\(\cfrac{1}{2}x^2+C\)

则在\((0,+\infty)\)\(g'(x)=f'(x)-x<0\)\(g(x)\)单调递减,

又由于\(f(-x)+f(x)=x^2\),改写为\(f(-x)-\cfrac{1}{2}(-x)^2+f(x)-\cfrac{1}{2}(x)^2=0\),即就是\(g(-x)+g(x)=0\)

即函数\(g(x)\)为定义在\(R\)上的奇函数,

  • $\color{red}{函数周期性}$

概念理解

理解概念中的关键词,知道有些函数不是周期函数,有些函数仅有正周期或者负周期,而且常函数没有最小正周期,如\(f(x)=c,\)\(f(x+T)=c,\)此时的\(T\)没有最小的正数。

  • 函数周期性的给出方式:

1、\(f(x+4)=f(x)\)或者\(f(x+2)=f(x-2)\Longrightarrow T=4\)

2、\(f(x+a)=-f(x)\Longrightarrow T=2a\;\;\;\;\;\) \(f(x+a)=\cfrac{k}{f(x)}(k\neq 0)\Longrightarrow T=2a\);

3、\(f(x+2)=f(x+1)-f(x)\Longrightarrow f(x+3)=-f(x)\Longrightarrow T=6\)

或者\(f(n+2)=f(n+1)-f(n)\Longrightarrow f(n+3)=-f(n)\Longrightarrow T=6\)

4、\(f(x+6)=f(x)+f(3)\)再加上\(f(x)\)的奇偶性\(\Longrightarrow T=6\)(赋值法)

\(f(x+6)=f(x)+nf(3)(n\in N^*)\)再加上\(f(x)\)是偶函数\(\Longrightarrow T=6\)(赋值法)

提示:用到赋值法,令\(x=-3,f(-3+6)=f(-3)+f(3)\)推出\(f(3)=0\)从而\(f(x+6)=f(x),\)\(T=6.\)

5、已知函数\(f(x)\)满足\(f(1)=\cfrac{1}{2}\),且\(f(x+y)+f(x-y)=2f(x)f(y)\),求\(f(0)+f(1)+f(2)+\cdots+f(2016)\)的值.

\(x=y=0\),则有\(2f(0)=2f^2(0)\),得到\(f(0)=0或f(0)=1\);再令\(x=1,y=0\),则有\(2f(1)=2f(1)f(0)\),得到\(f(0)=1\);又题目已知\(f(1)=\cfrac{1}{2}\)

\(y=1\),则有\(f(x+1)+f(x-1)=2f(x)f(1)=f(x)\),即就是\(f(x+1)+f(x-1)=f(x)\),由此得到\(f(x+2)+f(x)=f(x+1)\),两式相加得到\(f(x+2)=-f(x-1)\),即\(f(x+3)=-f(x)\),故周期为\(T=6\)

5、以奇偶性和对称性结合给出周期性;具体变形见下面

6、出现\(f(x+2)=\cfrac{1}{2}f(x)\),意味着周期性和伸缩性同时起作用。

  • $\color{blue}{对称性与周期性}$

①双对称轴\(\Longrightarrow\)周期性

函数\(f(x)\)有对称轴\(x=a\)\(x=b(a≠b)\),则函数\(f(x)\)有周期\(T=2|b-a|\)

②双对称中心\(\Longrightarrow\)周期性

函数\(f(x)\)有对称中心\((a,0)\)\((b,0) (a≠b),\)则函数\(f(x)\)有周期\(T=2|b-a|\)

③单轴+单心\(\Longrightarrow\)周期性

函数\(f(x)\)有对称轴\(x=a,\)有对称中心\((b,0) (a≠b),\)则函数\(f(x)\)有周期\(T=4|b-a|\)

  • $\color{blue}{奇偶、对称、周期性}$

①偶函数\(f(x)\)关于\(x=a\)对称,则函数\(f(x)\)有周期\(T=2|a|\)

②奇函数\(f(x)\)关于\(x=a\)对称,则函数\(f(x)\)有周期\(T=4|a|\)

③奇函数\(f(x)\)满足\(f(x+T)=f(x),(T\neq 0)\),则\(f(\frac{T}{2})=0\)

  • $\color{blue}{函数对称性(可以看作函数奇偶性的拓展)}$

由函数的奇偶性可知,
函数满足\(f(-x)+f(x)=0\),则函数\(f(x)\)为奇函数,是中心对称图形,对称中心为\((0,0)\)

那么若有\(f(4-x)+f(x)=2\),则函数\(f(x)\)不是奇函数,却是中心对称图形,则对称中心为\((2,1)\)(借助中点坐标公式,类比说明即可)(注意还必须由已知对称中心,写出\(f(4-x)+f(x)=0\)等)

函数满足\(f(-x)=f(x)\),则函数\(f(x)\)为偶函数,是轴对称图形,对称轴为\(x=0\)

那么若有\(f(4-x)=f(x)\)或者\(f(4-x)-f(x)=0\),则函数\(f(x)\)不是偶函数,但却是轴对称图形,对称轴\(x=2\)(注意还必须由已知对称轴,写出\(f(4-x)=f(x)\)等)

奇偶性+周期性\(\Longrightarrow\)对称性的变形例子

如,已知函数\(f(x)\)是奇函数,且满足\(f(x+4)=-f(x)\)

则由\(\begin{align*} f(x+4)&=-f(x) \\\ f(-x)&=-f(x)\end{align*}\) \(\Bigg\}\Longrightarrow f(x+4)=f(-x)\Longrightarrow\)对称轴是\(x=2\)

对称性+奇偶性\(\Longrightarrow\)周期性的变形例子

如,已知函数\(f(x)\)是奇函数,且满足\(f(2-x)=f(x)\)

则由\(\begin{align*} f(2-x)&=f(x) \\\ - f(-x)&= f(x)\end{align*}\) \(\Bigg\}\Longrightarrow f(2-x)=- f(-x)\Longrightarrow f(2+x)=- f(x)\Longrightarrow\)周期\(T=4\)

对称性+周期性\(\Longrightarrow\)奇偶性的变形例子

如,已知函数\(f(x)\)的周期是2,且满足\(f(2+x)=f(-x)\)

则由\(\begin{align*} f(2+x) &=f(-x) \\\ f(2+x) &= f(x)\end{align*}\) \(\Bigg\}\Longrightarrow f(-x)= f(x)\Longrightarrow\)函数\(f(x)\)是偶函数。

  • 引例说明1:已知定义在\(R\)上的函数\(f(x)\)满足①\(f(x+2)=2f(x)\),②\(x\in[-1,1],f(x)=\cos\frac{\pi}{2}x\),记函数\(g(x)=f(x)-log_4^{\;(x+1)}\),则函数\(g(x)\)在区间\([0,10]\)内的零点个数是(10)个。

分析:①“定义在\(R\)上”说明了定义域,

②“\(f(x+2)=2f(x)\)”所说是周期性和伸缩性的结合,示例

③“\(x\in[-1,1],f(x)=\cos\frac{\pi}{2}x\)”是说在限定区间上的函数解析式,是作图的起始依据。

④“函数\(g(x)\)在区间\([0,10]\)内的零点个数”需要转化为方程\(f(x)-log_4^{\;(x+1)}=0\)的根的个数,再转化为两个函数“\(y=f(x)\)”和“\(y=log_4^{\;(x+1)}\)”的图像交点的个数问题。而做函数“\(y=log_4^{\;(x+1)}\)”的图像用变换法,做函数“\(y=f(x)\)”的图像就需要用以上刚才解析的各种性质。至此,本题的思路基本就清晰多了。

【详细解析】
首先需要写出分段函数\(f(x)\)的解析式,

\(f(x) = \begin{cases}cos\cfrac{\pi}{2}x &-1\leq x\leq 1 \\\ 2cos\cfrac{\pi}{2}(x-2) &1<x\leq 3 \\\ 2^2cos\cfrac{\pi}{2}(x-4) &3<x\leq 5 \\\ \cdots \\\ 2^5cos\cfrac{\pi}{2}(x-10) &9<x\leq 10\end{cases}\)

\(f(x) = \begin{cases}cos\cfrac{\pi}{2}x &-1\leq x\leq 1 \\\ 2f(x-2) &x>1 \end{cases}\)

重点说明第二个表达形式的来源,由\(f(x+2)=2f(x),x\in [-1,1]\),则\(x+2\in [1,3]\),令\(x+2=t\in [1,3]\),则\(x=t-2\),故\(f(t)=2f(t-2)\),即\(f(x)=2f(x-2),x\in[1,3]\)

以下详细说明作图过程

图像:992978-20170308171500656-462572691.png

992978-20170308171514344-1025638559.png

作图命令:

如果[-1 ≤ x ≤ 1, cos((π x) / 2)]

序列[2^k f(x - 2k), k, 1, 5]

  • 引例说明2:(2017年宝鸡市二检)已知定义在\(R\)上的函数\(y=f(x)\)满足:①对任意的\(x\in R\),都有\(f(x+2)=f(x-2)\);②函数\(y=f(x+2)是偶函数\);③当\(x\in(0,2]\)时,\(f(x)=e^x-\cfrac{1}{x},a=f(-5),b=f(\cfrac{19}{2}),c=f(\cfrac{41}{4})\),则\(a,b,c\)的大小关系是(\(\hspace{2cm}\))。

A.\(b<a<c\) \(\hspace{2cm}\) B.\(c<a<b\) \(\hspace{2cm}\) C.\(c<b<a\) \(\hspace{2cm}\) D.\(a<b<c\)

分析:本题目是函数各种性质综合应用的典型题目,如果你对函数的各种性质的给出方式很熟悉,那么由①可知,函数满足\(f(x+4)=f(x)\),其周期是\(4\);由②可知\(y=f(x)\)的对称轴是\(x=2\),可以表达为\(f(x+4)=f(-x)\),那么在结合\(f(x+4)=f(x)\),可知函数\(f(x)\)还是偶函数;由③借助导数工具可得,函数\(f(x)\)在区间\((0,2]\)上单调递增,有了以上分析得到的函数的周期性、奇偶性、单调性,就可以轻松的解决题目中的大小比较了。

\(a=f(-5)\xlongequal{周期性}f(-1)\xlongequal{奇偶性}f(1)\)\(b=f(\cfrac{19}{2})\xlongequal{周期性}f(\cfrac{3}{2})=f(1.5)\)

\(c=f(\cfrac{41}{4})\xlongequal{周期性}f(2+\cfrac{1}{4})\xlongequal{已知表达式}f(\cfrac{1}{4}-2)\xlongequal{偶函数}f(2-\cfrac{1}{4})=f(1.75)\)

\(\because f(x)\)在区间\((0,2]\)\(\nearrow\)\(1<1.5<1.75\)\(\therefore f(1)<f(1.5)<f(1.75)\),即\(a<b<c\),故选\(D\)

  • 引例说明3(2016.四川高考):已知函数\(f(x)\)是定义在\(R\)上的周期为2的奇函数,当\(0<x<1\)时,\(f(x)=4^x\),则\(f(-\cfrac{5}{2})+f(1)\)的值是多少?

分析:本题目容易求出\(f(-\cfrac{5}{2})=f(-0.5)=-f(0.5)=-2\),难点是求\(f(1)\)的值;由已知可知函数满足\(f(x+2)=f(x),f(x)=-f(-x)\),联立可得到\(f(x+2)=-f(-x)\),再赋值\(x=-1\)可得,\(f(-1+2)=-f(1)\),即\(2f(1)=0\),所以\(f(1)=0\)。则\(f(-\cfrac{5}{2})+f(1)=-2\)

转载于:https://www.cnblogs.com/wanghai0666/p/5928780.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值