【Machine Learning】决策树之简介(1)

Content

1.decision tree representation
2.ID3:a top down learning algorithm
3.expressiveness of data 可表达性
4.bias of ID3 偏差
5.best attributes 最佳属性
Gain(S,A) 信息增益
6.dealing with overfitting 避免过拟合

一、简介 Decision Trees (决策树)

1.1 Steps

1.pick best attribute(挑选最佳属性)

2.Ask Question

3.follow the answer path

4.repeat,go back to 1 until got an answer

1.2 决策树可表达性
  • A AND B

1143923-20180110103243097-1023101493.jpg

  • A XOR B 异或

exclusive OR,或缩写成xor异或(xor)

理解:

1.异或的数学符号为“⊕”,即模2加

2.相异出 “或”的结果—— 1 (理解简记法)

3.当人们英语表达的 or —— means either……or ,actually it's xor in math

eg. 你是想去游泳,还是想去看电影?

二者选其一,相异时output 为1。(你不可能同时去两个地方,相同时output为0)

二、决策树算法之ID3

三、其他注意事项

3.1 when do we stop?

1.what about noise

2.overfitting(过拟合)

树过大,过复杂,违反了奥卡姆剃刀定律

3.哪些方法可以帮助避免过拟合?

1)交叉验证(cross-validation)

2)剪枝(Pruning)——缩小决策树

3)output : vote

3.2 在同一路径上重复一个询问属性有意义吗?

1143923-20180110103301269-850315996.jpg

解答:

1.对于非连续属性,没必要

2.对于连续属性,有必要

例如 属性为age ,node:20<age<30?

if no ,则还需要再问询age属性
eg. node: age<20?

转载于:https://www.cnblogs.com/Neo007/p/8257295.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值