【2022吴恩达机器学习】决策树

决策树

1.1决策树模型

决策树是一种典型的分类方法

比如说有一组数据,特征量是“是不是折耳”、“是不是圆脸”、“有没有胡须”,输入特征x是这三项,预测目标输出y为“是不是猫”,x采用分类(离散值)。

决策树模型:

椭圆形的节点都为决策节点,矩形框称为叶子节点。

两边子节点的划分属性不一致原因在于:原样本集经过Ear shape属性判断之后,样本划分为两个部分(Ear shape=Pointy;Ear shap=Floppy),这两个部分再根据熵或Gini系数计算最佳划分属性时,可能会得到不同的结果,即:可能是Face shape 也可能是 Whiskers。而由于经过第二层(Face shape/Whiskers)的划分后样本标签已经纯净(label列均为统一的cat或Not cat),此时该模型训练就结束了,不需要再进行下一个最优划分属性的计算了。

1.2 如何建立一个决策树

决策树是由顶端node不断分裂而形成的。

1.如何选择在每个节点中生成哪些特征?

优先使用information gain最大的特征来分裂,即先用最有效的特征。对于预测是否为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值