伯努利方程及其应用
1.伯努利方程
1.1 伯努利方程推导
由动量方程(流体的表面力加质量力即为流体的动量变化量):
F
f
z
+
F
s
z
=
q
m
(
v
2
z
−
v
1
z
)
F_{fz}+F_{sz} = q_m(v_{2z}-v_{1z})
Ffz+Fsz=qm(v2z−v1z)
理想定常流动中取一微元流管,如下图所示:
对z方向列动量方程:
p
A
−
(
p
+
d
p
)
(
A
+
d
A
)
+
(
p
+
0.5
p
)
d
A
−
1
2
ρ
g
(
2
A
+
d
A
)
d
z
=
ρ
v
A
(
v
+
d
v
−
v
)
pA-(p+dp)(A+dA)+(p+0.5p)dA-\frac{1}{2}\rho g(2A+dA)dz=\rho vA(v+dv-v)
pA−(p+dp)(A+dA)+(p+0.5p)dA−21ρg(2A+dA)dz=ρvA(v+dv−v)
略去高阶小项:
ρ
v
d
v
+
ρ
g
d
z
+
d
p
=
0
\rho vdv+\rho gdz+dp=0
ρvdv+ρgdz+dp=0
即:
d
p
=
−
ρ
v
d
v
−
ρ
g
d
z
dp=-\rho vdv-\rho gdz
dp=−ρvdv−ρgdz
适用条件:重力场、理想、定常、沿同一流线。
1.2 伯努利方程不同形式
广义伯努利方程:
v
2
2
+
g
z
+
∫
d
p
ρ
=
C
\frac{v^2}{2}+gz+\int \frac{dp}{\rho}=C
2v2+gz+∫ρdp=C
对于不可压流体:
ρ
=
C
v
2
2
+
g
z
+
p
ρ
=
C
v
2
2
g
+
z
+
p
ρ
g
=
H
\rho =C \\ \frac{v^2}{2}+gz+\frac{p}{\rho}=C \\ \frac{v^2}{2g}+z+\frac{p}{\rho g}=H \\
ρ=C2v2+gz+ρp=C2gv2+z+ρgp=H
适用条件:重力场、理想、定常、沿同一流线。
1.3 伯努利方程的意义
-
物理意义:
在适用条件下,流体的动能、位势能和压强势能可以相互转变,三者之和保持不变。
v 2 2 + g z + p ρ = C v 2 2 : 单位质量流体的动能。 g z :位势能。 p ρ :压强势能 ( 流体因压强而具有做功的能力 ) 。 C :机械能。 \frac{v^2}{2}+gz+\frac{p}{\rho}=C \\ \frac{v^2}{2}:单位质量流体的动能。 gz:位势能。 \frac{p}{\rho}:压强势能(流体因压强而具有做功的能力)。 C:机械能。 2v2+gz+ρp=C2v2:单位质量流体的动能。gz:位势能。ρp:压强势能(流体因压强而具有做功的能力)。C:机械能。
- 几何意义:
速度水头+位置水头+压强水头=总水头。
总水头线为一平行于基准线的水平线。
水头:单位质量流体具有的能量。
v
2
2
g
+
z
+
p
ρ
g
=
H
v
2
2
g
:
速度水头。
z
:
位置水头。
p
ρ
g
:压强水头。
H
:总水头。
\frac{v^2}{2g}+z+\frac{p}{\rho g}=H \\ \frac{v^2}{2g}:速度水头。 z:位置水头。 \frac{p}{\rho g}:压强水头。 H:总水头。
2gv2+z+ρgp=H2gv2:速度水头。z:位置水头。ρgp:压强水头。H:总水头。
2.工程应用
- 皮托管测流速
已知有如下弯管:
已知:
v
A
=
0
(
A
:驻点)
滞止压强:
p
A
=
p
a
+
ρ
g
(
H
0
+
h
)
B
点:
p
B
=
p
a
+
ρ
g
H
0
v_A = 0(A:驻点) \\ 滞止压强:p_A = p_a + \rho g(H_0+h) \\ B点:p_B = p_a + \rho gH_0
vA=0(A:驻点)滞止压强:pA=pa+ρg(H0+h)B点:pB=pa+ρgH0
对A、B两点列伯努利方程:
v
B
2
2
g
+
z
B
+
p
B
ρ
g
=
v
A
2
2
g
+
z
A
+
p
A
ρ
g
\frac{v_B^2}{2g}+z_B+\frac{p_B}{\rho g} = \frac{v_A^2}{2g}+z_A+\frac{p_A}{\rho g}
2gvB2+zB+ρgpB=2gvA2+zA+ρgpA
即:
ρ
v
B
2
2
g
+
p
B
=
p
A
\frac{\rho v_B^2}{2g}+p_B= p_A
2gρvB2+pB=pA
vb为:
v
B
=
2
(
p
A
−
p
B
)
ρ
=
2
g
h
v_B = \sqrt{\frac{2(p_A-p_B)}{\rho}} = \sqrt{2gh}
vB=ρ2(pA−pB)=2gh
将pa和pb作为总压和静压,可得:
p
0
=
p
+
1
2
ρ
v
2
p
0
:
总压。
p
:
静压。
1
2
ρ
v
2
:
动压。
p_0 = p +\frac{1}{2}\rho v^2 \\ p_0:总压。 p:静压。 \frac{1}{2}\rho v^2:动压。
p0=p+21ρv2p0:总压。p:静压。21ρv2:动压。
可获得转速为:
v
=
2
(
p
0
−
p
)
ρ
v=\sqrt{\frac{2(p_0-p)}{\rho}}
v=ρ2(p0−p)
可得皮托-静压管: