[流体力学]—伯努利方程及其应用

伯努利方程及其应用

1.伯努利方程

1.1 伯努利方程推导

由动量方程(流体的表面力加质量力即为流体的动量变化量):
F f z + F s z = q m ( v 2 z − v 1 z ) F_{fz}+F_{sz} = q_m(v_{2z}-v_{1z}) Ffz+Fsz=qm(v2zv1z)
理想定常流动中取一微元流管,如下图所示:

在这里插入图片描述

对z方向列动量方程:
p A − ( p + d p ) ( A + d A ) + ( p + 0.5 p ) d A − 1 2 ρ g ( 2 A + d A ) d z = ρ v A ( v + d v − v ) pA-(p+dp)(A+dA)+(p+0.5p)dA-\frac{1}{2}\rho g(2A+dA)dz=\rho vA(v+dv-v) pA(p+dp)(A+dA)+(p+0.5p)dA21ρg(2A+dA)dz=ρvA(v+dvv)
略去高阶小项:
ρ v d v + ρ g d z + d p = 0 \rho vdv+\rho gdz+dp=0 ρvdv+ρgdz+dp=0
即:
d p = − ρ v d v − ρ g d z dp=-\rho vdv-\rho gdz dp=ρvdvρgdz
适用条件:重力场、理想、定常、沿同一流线。

1.2 伯努利方程不同形式

广义伯努利方程:
v 2 2 + g z + ∫ d p ρ = C \frac{v^2}{2}+gz+\int \frac{dp}{\rho}=C 2v2+gz+ρdp=C
对于不可压流体:
ρ = C v 2 2 + g z + p ρ = C v 2 2 g + z + p ρ g = H \rho =C \\ \frac{v^2}{2}+gz+\frac{p}{\rho}=C \\ \frac{v^2}{2g}+z+\frac{p}{\rho g}=H \\ ρ=C2v2+gz+ρp=C2gv2+z+ρgp=H
适用条件:重力场、理想、定常、沿同一流线。

1.3 伯努利方程的意义

  • 物理意义:

    在适用条件下,流体的动能、位势能和压强势能可以相互转变,三者之和保持不变。

v 2 2 + g z + p ρ = C v 2 2 : 单位质量流体的动能。 g z :位势能。 p ρ :压强势能 ( 流体因压强而具有做功的能力 ) 。 C :机械能。 \frac{v^2}{2}+gz+\frac{p}{\rho}=C \\ \frac{v^2}{2}:单位质量流体的动能。 gz:位势能。 \frac{p}{\rho}:压强势能(流体因压强而具有做功的能力)。 C:机械能。 2v2+gz+ρp=C2v2:单位质量流体的动能。gz:位势能。ρp:压强势能(流体因压强而具有做功的能力)C:机械能。

  • 几何意义:

速度水头+位置水头+压强水头=总水头。

总水头线为一平行于基准线的水平线。

水头:单位质量流体具有的能量。
v 2 2 g + z + p ρ g = H v 2 2 g : 速度水头。 z : 位置水头。 p ρ g :压强水头。 H :总水头。 \frac{v^2}{2g}+z+\frac{p}{\rho g}=H \\ \frac{v^2}{2g}:速度水头。 z:位置水头。 \frac{p}{\rho g}:压强水头。 H:总水头。 2gv2+z+ρgp=H2gv2:速度水头。z:位置水头。ρgp:压强水头。H:总水头。

2.工程应用

  • 皮托管测流速

已知有如下弯管:

在这里插入图片描述

已知:
v A = 0 ( A :驻点) 滞止压强: p A = p a + ρ g ( H 0 + h ) B 点: p B = p a + ρ g H 0 v_A = 0(A:驻点) \\ 滞止压强:p_A = p_a + \rho g(H_0+h) \\ B点:p_B = p_a + \rho gH_0 vA=0A:驻点)滞止压强:pA=pa+ρg(H0+h)B点:pB=pa+ρgH0
对A、B两点列伯努利方程:
v B 2 2 g + z B + p B ρ g = v A 2 2 g + z A + p A ρ g \frac{v_B^2}{2g}+z_B+\frac{p_B}{\rho g} = \frac{v_A^2}{2g}+z_A+\frac{p_A}{\rho g} 2gvB2+zB+ρgpB=2gvA2+zA+ρgpA
即:
ρ v B 2 2 g + p B = p A \frac{\rho v_B^2}{2g}+p_B= p_A 2gρvB2+pB=pA
vb为:
v B = 2 ( p A − p B ) ρ = 2 g h v_B = \sqrt{\frac{2(p_A-p_B)}{\rho}} = \sqrt{2gh} vB=ρ2(pApB) =2gh
将pa和pb作为总压和静压,可得:
p 0 = p + 1 2 ρ v 2 p 0 : 总压。 p : 静压。 1 2 ρ v 2 : 动压。 p_0 = p +\frac{1}{2}\rho v^2 \\ p_0:总压。 p:静压。 \frac{1}{2}\rho v^2:动压。 p0=p+21ρv2p0:总压。p:静压。21ρv2:动压。
可获得转速为:
v = 2 ( p 0 − p ) ρ v=\sqrt{\frac{2(p_0-p)}{\rho}} v=ρ2(p0p)
可得皮托-静压管:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值