前言
一、基础知识
二、典型例题
例1函数\(f(x)=2cos(\omega x+\phi)(\omega\neq 0)\)对任意\(x\)都有\(f(\cfrac{\pi}{4}+x)=f(\cfrac{\pi}{4}-x)\)成立,则\(f(\cfrac{\pi}{4})\)的值为【】
分析:由任意\(x\)都有\(f(\cfrac{\pi}{4}+x)=f(\cfrac{\pi}{4}-x)\)成立,可知\(x=\cfrac{\pi}{4}\)为函数的一条对称轴,
而正弦型或余弦型函数在对称轴处必然会取到最值,故\(f(\cfrac{\pi}{4})=\pm 2\),选B。
解后反思:此题目如果不注意函数的性质,往往会想到求\(\omega\)和\(\phi\),这样思路就跑偏了。
例2【2018云南玉溪一模】函数\(f(x)=\sqrt{3}sin2x+2cos^2x\)的一条对称轴为直线【】
分析:\(f(x)=2sin(2x+\cfrac{\pi}{6})+1\),
法1:比较繁琐,令\(2x+\cfrac{\pi}{6}=k\pi+\cfrac{\pi}{2}\),\(k\in Z\),则\(x=\cfrac{k\pi}{2}+\cfrac{\pi}{6}\),\(k\in Z\),即对称轴有无数条,
令\(k=0\),得到其中的一条对称轴为\(x=\cfrac{\pi}{6}\),当\(k\)取其他的值时,都不能得到其他的选项,故选\(B\)。
法2:比较简单,利用函数在对称轴处的函数值能取到最值,故只需验证即可,
比如,将\(x=\cfrac{\pi}{12}\)代入\(sin(2x+\cfrac{\pi}{6})\),即\(sin\cfrac{\pi}{3}\),并不能使得其取到最值\(\pm 1\),故舍去\(A\);
将\(x=\cfrac{\pi}{6}\)代入\(sin(2x+\cfrac{\pi}{6})\),即\(sin\cfrac{\pi}{2}\),能使得其取到最值\(+1\),故\(B\)必然满足;用同样的方法可以验证其余的选项错误;
例3【2018江西赣州5月适应性考试】若函数\(f(x)=3cos(2x+\cfrac{\pi}{6})-a\)在\([0,\cfrac{\pi}{2}]\)上有两个零点\(x_1\),\(x_2\),则\(x_1+x_2\)=【】
分析:只需要考虑函数\(y=cos(2x+\cfrac{\pi}{6})\)的对称性即可,由\(2x+\cfrac{\pi}{6}=k\pi\),\(k\in Z\),
得到对称轴\(x=\cfrac{k\pi}{2}-\cfrac{\pi}{12}\),由题可知,对称轴必须在\([0,\cfrac{\pi}{2}]\)内,令\(k=1\),得到对称轴为\(x=\cfrac{5}{12}\),
又两个零点\(x_1\)和\(x_2\)关于对称轴\(x=\cfrac{5}{12}\)对称,故\(x_1+x_2=\cfrac{5}{6}\)。
例4【2019届高三理科数学三轮模拟试题】若函数\(f(x)=asinx+cosx\)(\(a\)为常数,\(a\in R\))的图像关于直线\(x=\cfrac{\pi}{6}\)对称,则函数\(g(x)=sinx+acosx\)的图像【】
分析:\(y=f(x)=\sqrt{a^2+1}sin(x+\phi)\),其中\(tan\phi=\cfrac{1}{a}\),
由函数\(f(x)=asinx+cosx\)的图像关于直线\(x=\cfrac{\pi}{6}\)对称,可知\(\phi=\cfrac{\pi}{3}\),
则\(a=\cfrac{\sqrt{3}}{3}\),又\(g(x)=sinx+\cfrac{\sqrt{3}}{3}cosx=\cfrac{2\sqrt{3}}{3}sin(x+\cfrac{\pi}{6})\),
逐项验证,可知选\(D\)。