三角函数的对称性

前言

一、基础知识

二、典型例题

例1函数\(f(x)=2cos(\omega x+\phi)(\omega\neq 0)\)对任意\(x\)都有\(f(\cfrac{\pi}{4}+x)=f(\cfrac{\pi}{4}-x)\)成立,则\(f(\cfrac{\pi}{4})\)的值为【】

$A、2或0$ $B、-2或2$ $C、0$ $D、-2或0$

分析:由任意\(x\)都有\(f(\cfrac{\pi}{4}+x)=f(\cfrac{\pi}{4}-x)\)成立,可知\(x=\cfrac{\pi}{4}\)为函数的一条对称轴,

而正弦型或余弦型函数在对称轴处必然会取到最值,故\(f(\cfrac{\pi}{4})=\pm 2\),选B。

解后反思:此题目如果不注意函数的性质,往往会想到求\(\omega\)\(\phi\),这样思路就跑偏了。

例2【2018云南玉溪一模】函数\(f(x)=\sqrt{3}sin2x+2cos^2x\)的一条对称轴为直线【】

$A、x=\cfrac{\pi}{12}$ $B、x=\cfrac{\pi}{6}$ $C、x=\cfrac{\pi}{3}$ $D、x=\cfrac{\pi}{2}$

分析:\(f(x)=2sin(2x+\cfrac{\pi}{6})+1\)

法1:比较繁琐,令\(2x+\cfrac{\pi}{6}=k\pi+\cfrac{\pi}{2}\)\(k\in Z\),则\(x=\cfrac{k\pi}{2}+\cfrac{\pi}{6}\)\(k\in Z\),即对称轴有无数条,

\(k=0\),得到其中的一条对称轴为\(x=\cfrac{\pi}{6}\),当\(k\)取其他的值时,都不能得到其他的选项,故选\(B\)

法2:比较简单,利用函数在对称轴处的函数值能取到最值,故只需验证即可,

比如,将\(x=\cfrac{\pi}{12}\)代入\(sin(2x+\cfrac{\pi}{6})\),即\(sin\cfrac{\pi}{3}\),并不能使得其取到最值\(\pm 1\),故舍去\(A\)

\(x=\cfrac{\pi}{6}\)代入\(sin(2x+\cfrac{\pi}{6})\),即\(sin\cfrac{\pi}{2}\),能使得其取到最值\(+1\),故\(B\)必然满足;用同样的方法可以验证其余的选项错误;

例3【2018江西赣州5月适应性考试】若函数\(f(x)=3cos(2x+\cfrac{\pi}{6})-a\)\([0,\cfrac{\pi}{2}]\)上有两个零点\(x_1\)\(x_2\),则\(x_1+x_2\)=【】

$A、\cfrac{\pi}{3}$ $B、\cfrac{2\pi}{3}$ $C、\cfrac{5\pi}{6}$ $D、2\pi$

分析:只需要考虑函数\(y=cos(2x+\cfrac{\pi}{6})\)的对称性即可,由\(2x+\cfrac{\pi}{6}=k\pi\)\(k\in Z\)

得到对称轴\(x=\cfrac{k\pi}{2}-\cfrac{\pi}{12}\),由题可知,对称轴必须在\([0,\cfrac{\pi}{2}]\)内,令\(k=1\),得到对称轴为\(x=\cfrac{5}{12}\)

又两个零点\(x_1\)\(x_2\)关于对称轴\(x=\cfrac{5}{12}\)对称,故\(x_1+x_2=\cfrac{5}{6}\)

例4【2019届高三理科数学三轮模拟试题】若函数\(f(x)=asinx+cosx\)(\(a\)为常数,\(a\in R\))的图像关于直线\(x=\cfrac{\pi}{6}\)对称,则函数\(g(x)=sinx+acosx\)的图像【】

$A、关于直线x=-\cfrac{\pi}{3}对称$ $B、关于直线x=\cfrac{\pi}{6}对称$ $C、关于点(\cfrac{\pi}{3},0)对称$ $D、关于点(\cfrac{5\pi}{6},0)对称$

分析:\(y=f(x)=\sqrt{a^2+1}sin(x+\phi)\),其中\(tan\phi=\cfrac{1}{a}\)

由函数\(f(x)=asinx+cosx\)的图像关于直线\(x=\cfrac{\pi}{6}\)对称,可知\(\phi=\cfrac{\pi}{3}\)

\(a=\cfrac{\sqrt{3}}{3}\),又\(g(x)=sinx+\cfrac{\sqrt{3}}{3}cosx=\cfrac{2\sqrt{3}}{3}sin(x+\cfrac{\pi}{6})\)

逐项验证,可知选\(D\)

转载于:https://www.cnblogs.com/wanghai0666/p/10639026.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值