MSCN系数是无参考的空间域图像质量评估算法BRISQUE(No-Reference Image Quality Assessment in the Spatial Domain)中提出的,MSCN系数具有由于失真的存在而改变的特征统计特性,并且量化这些变化将使得可以预测影响图像的失真类型以及其感知质量。这篇论文的大致原理是从图像中提取MSCN系数,然后将MSCN系数拟合成非对称性广义高斯分布,提取拟合的高斯分布的特征,输入到支持向量机SVM中做回归,最终得到图像质量的评分。
这篇论文提供了源代码,其中有MSCN的计算代码,但是论文中的关于证明不同失真图像的MSCN系数具有不同分布的直方图的代码并没有,经过大概大半天的时间,我把这个直方图用matlab做了出来。
首先,直观的看一下MSCN系数图如下(原图和MSCN系数图):
MSCN系数图的计算公式源论文中有,代码从源代码中修改而来,如下:
clear;clc; imdist=imread('2.png'); %imshow(imdist); %显示原图 imdist = rgb2gray(imdist); imdist = double(imdist); %imdist=phasecong3(imdist); %imshow(phaseCong) window = fspecial('gaussian',7,7/6); window = window/sum(sum(window)); mu = filter2(window, imdist, 'same'); mu_sq = mu.*mu; sigma = sqrt(abs(filter2(window, imdist.*imdist, 'same') - mu_sq)); struc