上一节简单介绍了可求解的一阶常微分方程的解法,因为大部分非线性方程是不可解的,所以需要给出解的存在性的证明。本节主要介绍一阶非线性常微分方程Cauchy问题
$$
(E)\,\,\,\,\,\frac{dy}{dx}=f(x,y),\,\,\,\,\,y(x_{0})=y_{0}.
$$
解的存在性定理Picard-Lindelof定理(有的书上称它为Cauchy-Lipschitz定理). 对一阶常微分方程解的存在性理论作出重要贡献的数学家有Cauchy、Lipschitz、Picard、Lindelof、Peano等,其中Picard提出的Picard迭代法尤其值得关注。据传Picard证明Picard—Lindelof定理的原始论文足足有三四百页,后来数学家Banach把Picard的方法抽象出来证明了著名的Banach不动点定理。Banach不动点定理是分析学中最重要的定理之一,也是用的最多的定理之一,它在线性方程组求解迭代方法的收敛性、常微分方程的两点边值问题、隐函数定理、Lax-Milgram定理甚至代数方程解的存在性等问题中均有重要应用。许多微分方程(组)通过转化为等价的积分方程再利用不动点理论来证明解的存在性。本节也采用这一框架来探索方程(E)解的存在性。为此,首先利用Picard迭代给出Banach不动点定理的证明。
定理1 (Banach) 设$X$为Banach空间(即完备的赋范空间,完备的意思指所有的Cauchy列均收敛),$f:X\to X$为压缩映射,即存在常数$k, 0<k<1$,对任意$x,y\in X$有