复变函数论5-2-解析函数的孤立奇点5-Picard/皮卡定理1:魏尔斯特拉斯定理【描述出解析函数在本质奇点邻域内的特性】

魏尔斯特拉斯定理描述了解析函数在本质奇点邻域内的特性,即对于任何常数A,存在点列趋于该奇点,使得函数值趋近于A。通过举例说明了函数sin(z)/z和e^x/z在原点作为本质奇点的行为。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

魏尔斯特拉斯 1876 年给出下面的定理,描述出解析函数在本质奇点邻域内的特性.

定理 5.8

如果 a a a 为函数 f ( z ) f(z) f(z) 的本质奇点, 则对于任何常数 A A A,不管它是有限数还是无穷, 都有一个收敛于 a a a 的点列 { z n } \left\{z_{n}\right\} { zn}, 使得

lim ⁡ z n → a f ( z n ) = A . \lim \limits_{z_{n} \rightarrow a} f\left(z_{n}\right)=A . znalimf(zn)=A.

换句话说, 在本质奇点的无论怎样小的去心邻域内, 函数 f ( z ) f(z) f(z)可以取任意接近于预先给定的任何数值 (有限的或无穷的).


(1) 在 A = ∞ A=\infty A= 的情形, 定理是正确的. 因为函数 f ( z ) f(z) f(z) 的模在 a a a的任何去心邻域内都是无界的. 否则, a a a 必为 f ( z ) f(z) f(z) 的可去奇点.
(2) 现在设 A ≠ ∞ A \neq \infty A=.
可能有这种情形发生, 在点 a a a 的任意小的去心邻域内有这样一点 z z z 存在, 使 f ( z ) f(z) f(z) = A =A =A. 在这种情形下, 定理已经得证.

因此, 我们可以假定, 在点 a a a 的充分小的去心邻域 K \ { a } K \backslash\{a\} K\{ a} f ( z ) ≠ A f(z) \neq A f(z)=A. 这样, 由定理 5.7 , 函数

φ ( z ) = 1 f ( z ) − A \varphi(z)=\frac{1}{f(z)-A} φ(z)=f(z)A1

K \ { a } K \backslash\{a\} K\{ a} 内解析, 且以 a a a 为本质奇点 (因 a a a f ( z ) f(z) f(z)的本质奇点). 根据前面 (1) 段的结果,必定有一个趋向 a a a 的点列
{ z n } \left\{z_{n}\right\} { zn} 存在,使得

lim ⁡ z n → a φ ( z n ) = ∞ .  \lim \limits_{z_{n} \rightarrow a} \varphi\left(z_{n}\right)=\infty \text {. } znalimφ(zn)=

由此推出

lim ⁡ z n → a f ( z n ) = A . \lim \limits_{z_{n} \rightarrow a} f\left(z_{n}\right)=A .

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值