魏尔斯特拉斯 1876 年给出下面的定理,描述出解析函数在本质奇点邻域内的特性.
定理 5.8
如果 a a a 为函数 f ( z ) f(z) f(z) 的本质奇点, 则对于任何常数 A A A,不管它是有限数还是无穷, 都有一个收敛于 a a a 的点列 { z n } \left\{z_{n}\right\} { zn}, 使得
lim z n → a f ( z n ) = A . \lim \limits_{z_{n} \rightarrow a} f\left(z_{n}\right)=A . zn→alimf(zn)=A.
换句话说, 在本质奇点的无论怎样小的去心邻域内, 函数 f ( z ) f(z) f(z)可以取任意接近于预先给定的任何数值 (有限的或无穷的).
证
(1) 在 A = ∞ A=\infty A=∞ 的情形, 定理是正确的. 因为函数 f ( z ) f(z) f(z) 的模在 a a a的任何去心邻域内都是无界的. 否则, a a a 必为 f ( z ) f(z) f(z) 的可去奇点.
(2) 现在设 A ≠ ∞ A \neq \infty A=∞.
可能有这种情形发生, 在点 a a a 的任意小的去心邻域内有这样一点 z z z 存在, 使 f ( z ) f(z) f(z) = A =A =A. 在这种情形下, 定理已经得证.
因此, 我们可以假定, 在点 a a a 的充分小的去心邻域 K \ { a } K \backslash\{a\} K\{ a} 内 f ( z ) ≠ A f(z) \neq A f(z)=A. 这样, 由定理 5.7 , 函数
φ ( z ) = 1 f ( z ) − A \varphi(z)=\frac{1}{f(z)-A} φ(z)=f(z)−A1
在 K \ { a } K \backslash\{a\} K\{
a} 内解析, 且以 a a a 为本质奇点 (因 a a a 为 f ( z ) f(z) f(z)的本质奇点). 根据前面 (1) 段的结果,必定有一个趋向 a a a 的点列
{ z n } \left\{z_{n}\right\} {
zn} 存在,使得
lim z n → a φ ( z n ) = ∞ . \lim \limits_{z_{n} \rightarrow a} \varphi\left(z_{n}\right)=\infty \text {. } zn→alimφ(zn)=∞.
由此推出
lim z n → a f ( z n ) = A . \lim \limits_{z_{n} \rightarrow a} f\left(z_{n}\right)=A .