容纳最多的水

原题

  Given n non-negative integers a1, a2, …, an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a Container, such that the container contains the most water.
Note: You may not slant the container.

题目大意

  找两条竖线然后这两条线以及X轴构成的容器能容纳最多的水。

解题思路

  使用贪心算法
  1.首先假设我们找到能取最大容积的纵线为 i, j (假定i < j),那么得到的最大容积 C = min( ai , aj ) * ( j- i) ;
  2.下面我们看这么一条性质:
  ①: 在 j 的右端没有一条线会比它高!假设存在 k |( j < k && ak > aj) ,那么 由 ak > aj,所以 min(ai, aj, ak) =min(ai, aj) ,所以由i, k构成的容器的容积C’ = min(ai, aj) * (k - i) > C,与C是最值矛盾,所以得证j的后边不会有比它还高的线;
  ②:同理,在i的左边也不会有比它高的线;这说明什么呢?如果我们目前得到的候选: 设为 x, y两条线(x< y),那么能够得到比它更大容积的新的两条边必然在[x, y]区间内并且 ax’ >= ax , ay’ >= ay;
   3.所以我们从两头向中间靠拢,同时更新候选值;在收缩区间的时候优先从x, y中较小的边开始收缩;

代码实现

public class Solution {

    public int maxArea(int[] height) {

        // 参数校验
        if (height == null || height.length < 2) {
            return 0;
        }


        // 记录最大的结果
        int result = 0;

        // 左边的竖线
        int left = 0;
        // 右边的竖线
        int right = height.length - 1;

        while (left < right) {
            // 设算当前的最大值
            result = Math.max(result, Math.min(height[left], height[right]) * (right - left));
            // 如果右边线高
            if (height[left] < height[right]) {
                int k = left;
                // 从[left, right - 1]中,从左向右找,找第一个高度比height[left]高的位置
                while (k < right && height[k] <= height[left]) {
                    k++;
                }

                // 从[left, right - 1]中,记录第一个比原来height[left]高的位置
                left = k;
            }
            // 左边的线高
            else {
                int k = right;
                // 从[left + 1, right]中,从右向左找,找第一个高度比height[right]高的位置
                while (k > left && height[k] <= height[right]) {
                    k--;
                }

                // 从[left, right - 1]中,记录第一个比原来height[right]高的位置
                right = k;
            }
        }

        return result;
    }
}

转载于:https://my.oschina.net/u/2822116/blog/804389

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值