我遇到过的神奇的难以解释的算法

一. 求刚好大于某个数的2的幂的数.

  即 Round up to the next highest power of 2.

  需求来源: 在开发图形引擎的时候,一般的纹理对象的长和宽必须是2的幂. 比如128,256,1024这样的数.

     但是我们的纹理不一定是这样的,因此有时候需要进行纹理的补充.

  如果有人能知道该算法原理,求告知求地址

  http://graphics.stanford.edu/~seander/bithacks.html

  devised by Sean Eron Aderson

  http://graphics.stanford.edu/~seander/

  方法1:

1 int nextPowerOf2(int n) { 
2     n -= 1; 
3     n |= n >> 1; 
4     n |= n >> 2; 
5     n |= n >> 4; 
6     n |= n >> 8; 
7     n |= n >> 16; 
8     return n + 1; 
9 } 

  方法2:

    下面的函数仅在un为2的幂时返回0;

    

uint32_t is2n(uint32_t un)
{
    return un&(un-1);
}

    下面的函数返回不大于un的2的最大幂;

uint32_t max2n(uint32_t un)
{
    uint32_t mi = is2n(un);
    return mi?max2n(mi):un;
}

二. 大名鼎鼎的平方根倒数速算法

  http://zh.wikipedia.org/wiki/%E5%B9%B3%E6%96%B9%E6%A0%B9%E5%80%92%E6%95%B0%E9%80%9F%E7%AE%97%E6%B3%95

 1 float Q_rsqrt( float number )
 2 {
 3     long i;
 4     float x2, y;
 5     const float threehalfs = 1.5F;
 6  
 7     x2 = number * 0.5F;
 8     y  = number;
 9     i  = * ( long * ) &y;                       // evil floating point bit level hacking(对浮点数的邪恶位级hack)
10     i  = 0x5f3759df - ( i >> 1 );               // what the fuck?(这他妈的是怎么回事?)
11     y  = * ( float * ) &i;
12     y  = y * ( threehalfs - ( x2 * y * y ) );   // 1st iteration (第一次牛顿迭代)
13 //      y  = y * ( threehalfs - ( x2 * y * y ) );   // 2nd iteration, this can be removed(第二次迭代,可以删除)
14  
15     return y;
16 }

 

未完待续.......

转载于:https://www.cnblogs.com/tlm1992/p/3616955.html

weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
python017基于Python贫困生资助管理系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值