裂项相消法

一、常用公式:

常用式:\(\cfrac{1}{n(n+1)}=\cfrac{1}{n}-\cfrac{1}{n+1}\);推广式:\(\cfrac{1}{n(n+k)}=\cfrac{1}{k}(\cfrac{1}{n}-\cfrac{1}{n+k})\)

常用式:\(\cfrac{1}{\sqrt{n+1}+\sqrt{n}}=\sqrt{n+1}-\sqrt{n}\);推广式:\(\cfrac{1}{\sqrt{n+k}+\sqrt{n}}=\cfrac{1}{k}(\sqrt{n+k}-\sqrt{n})\)

常用式:\(\cfrac{1}{4n^2-1}=\cfrac{1}{2}(\cfrac{1}{2n-1}-\cfrac{1}{2n+1})\)

不常用:\(log_a(1+\cfrac{1}{n})=log_a(n+1)-log_an\)

不常用:\(\cfrac{a_{n+1}}{S_n\cdot S_{n+1}}=\cfrac{S_{n+1}-S_{n}}{S_n\cdot S_{n+1}}=\cfrac{1}{S_n}-\cfrac{1}{S_{n+1}}\)

不常用:\(\cfrac{2^n}{(2^n-1)(2^{n+1}-1)}=\cfrac{1}{2^n-1}-\cfrac{1}{2^{n+1}-1}\)

二、记忆方法:

比如,\(\cfrac{2}{(n-1)(n+1)}=2\cdot \cfrac{1}{(n-1)(n+1)}=2\cdot \Box (\cfrac{1}{n-1}-\cfrac{1}{n+1})\)

那么小括号前面的系数到底该是多少才能使得原式保持恒等变形呢?

我们只需要做通分的工作,将

\(\cfrac{1}{n-1}-\cfrac{1}{n+1}=\cfrac{(n+1)-(n-1)}{(n-1)(n+1)}=\cfrac{2}{(n-1)(n+1)}\)

\(\cfrac{1}{(n-1)(n+1)}=\cfrac{1}{2}(\cfrac{1}{n-1}-\cfrac{1}{n+1})\)

故上述\(\Box\)位置应该为\(\cfrac{1}{2}\)

\(\cfrac{2}{(n-1)(n+1)}=2\cdot \cfrac{1}{2} (\cfrac{1}{n-1}-\cfrac{1}{n+1})=\cfrac{1}{n-1}-\cfrac{1}{n+1}\)

再比如\((\sqrt{n+1}+\sqrt{n})(\sqrt{n+1}-\sqrt{n})=1\),故\(\cfrac{1}{\sqrt{n+1}+\sqrt{n}}=\sqrt{n+1}-\sqrt{n}\)

三、关联表示

\(\cfrac{1}{n^2+2n}\)

\(b_n=\cfrac{1}{a_n\cdot a_{n+1}}\)

\(\cfrac{a_{n+1}}{S_n\cdot S_{n+1}}\)

四、书写模式

如数列\(a_n=\cfrac{1}{n(n+2)}\),求其前\(n\)项和\(S_n\)

分析:先裂项得到,\(a_n=\cfrac{1}{2}(\cfrac{1}{n}-\cfrac{1}{n+2})\)

\(S_n=a_1+a_2+a_3+\cdots+a_n\)

则往下的求和书写格式有以下两种:

第一种书写格式:横向消项,容易出错;

\(S_n=\cfrac{1}{2}[(1-\cfrac{1}{3})+(\cfrac{1}{2}-\cfrac{1}{4})+(\cfrac{1}{3}-\cfrac{1}{5})+\cdots+(\cfrac{1}{n-1}-\cfrac{1}{n+1})+(\cfrac{1}{n}-\cfrac{1}{n+2})]\)

\(=\cfrac{1}{2}(1+\cfrac{1}{2}-\cfrac{1}{n+1}-\cfrac{1}{n+2})=\cdots\)

第二种书写格式:纵向消项,不易出错,如图所示;

先得到如下的表达式,

\(S_n=\cfrac{1}{2}[(1-\cfrac{1}{3})+(\cfrac{1}{2}-\cfrac{1}{4})+(\cfrac{1}{3}-\cfrac{1}{5})+\cdots+(\cfrac{1}{n-1}-\cfrac{1}{n+1})+(\cfrac{1}{n}-\cfrac{1}{n+2})]\)

然后如图所示,将每一个小括号写成两列,

$\begin{array}{lcl} &1&-&\not\dfrac{1}{3}&\\ &\dfrac{1}{2}&-&\not\dfrac{1}{4}&\\ &\not\dfrac{1}{3}&-&\not\dfrac{1}{5}&\\ &\cdots&\cdots&\cdots&\\ &\not\dfrac{1}{n-2}&-&\not\dfrac{1}{n}&\\ &\not\dfrac{1}{n-1}&-&\dfrac{1}{n+1}&\\ &\not\dfrac{1}{n}&-&\dfrac{1}{n+2}&\\ \end{array}$

很明显可以斜向消项,第一列剩余前两项,第二列剩余后两项,故结果为

\(S_n=\cfrac{1}{2}(1+\cfrac{1}{2}-\cfrac{1}{n+1}-\cfrac{1}{n+2})=\cdots\)

再给一个练习题,通过此练习题,更能体会纵向书写的妙处。

\(a_n=\cfrac{1}{n(n+3)}\),求其前\(n\)项和\(S_n\)

五、典例剖析

引例 2018天津高考中的一个裂项相消说明:

\(\cfrac{k\cdot 2^{k+1}}{(k+1)(k+2)}=\cfrac{2^{k+2}}{k+2}-\cfrac{2^{k+1}}{k+1}\)是如何变形得到的?

分析: 这样的变形是为了利用数列\(\{\cfrac{2^{k+1}}{k+1}\}\)完成消项。

\(\cfrac{k\cdot 2^{k+1}}{(k+1)(k+2)}\)

\(=2^{k+1}\cdot\cfrac{k}{(k+1)(k+2)}\)

\(=2^{k+1}\cdot \cfrac{2(k+1)-(k+2)}{(k+1)(k+2)}\)

\(=2^{k+1}\cdot (\cfrac{2}{k+2}-\cfrac{1}{k+1})\)

\(=\cfrac{2^{k+2}}{k+2}-\cfrac{2^{k+1}}{k+1}\)

例1【2019高三理科数学三轮模拟试题】已知数列\(\{a_n\}\)的前\(n\)项和为\(S_n\),且有\(3S_n=4a_n-2\),若\(b_n=log_\cfrac{1}{2}a_n\),则数列\(\{\cfrac{1}{b_n\cdot b_{n+1}}\}\)的前\(n\)项和\(T_n\)=_____________。

分析:先求得\(a_n=2n-1\),则\(b_n=1-2n\)

且数列\(\{\cfrac{1}{b_n\cdot b_{n+1}}\}\)的通项公式为\(\cfrac{1}{b_n\cdot b_{n+1}}=\cfrac{1}{2}(\cfrac{1}{2n-1}-\cfrac{1}{2n+1})\)

\(T_n=\cdots=\cfrac{n}{2n+1}\)

转载于:https://www.cnblogs.com/wanghai0666/p/9524701.html

  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值