拉格朗日乘子法的证明

拉格朗日乘子法的证明

在学习支持向量机的时候,计算对偶问题时用到了拉格朗日乘子法((Lagrange multiplier method)),回想起高中时使用拉格朗日乘子法求不等式约束条件下的最优化问题时的困惑,虽然一直知道用,但是却不知道为什么拉格朗日乘子法能够用。知其然更应知其所以然,本文就来扒一扒“拉格朗日乘子法”的来龙去脉。

等式约束下的最优化问题

给定一个不等式约束条件下的最优化问题,

$$\begin{array} {I}\mathop {\min }\limits_x \quad f(x) \ s.t.\quad g(x) = 0\end{array}\quad\quad (1)$$

此处假定$f(x)$为凸函数,需要找到的是在约束条件$g(x)=0$的条件下,使得目标函数$f(x)$最小的$x$值(注:$x$为一个n维向量)。一般情况下,对于一个凸函数的极值问题,我们只需要找到令目标函数的导数${f_x^{'}}=0$的点$x$即可。然而,由于此处存在的等式约束条件,使得目标函数导数等于0的点不一定能够满足约束条件。

从几何的角度看,这个问题的目标是在由方程$g(x)=0$所确定的$d-1$维曲面上,找到能使得目标函数$f(x)$最小化的$d$维点。我们以下图中二维空间为例:求函数$f(x,y)$在约束条件$g(x,y)=0$下的最小值。我们想象$f(x,y)$是一座“山”,$x$与$y$分别是其经纬度,$f(x,y)$为其海拔,图中的椭圆为这座"山"的等高线;约束条件$g(x,y)=0$为海拔为0的平面上的一条曲线。我们在这座"山"上乱逛,想要找到一个最高的点(最大与最小问题是相对的),但是我们的经纬度必须满足$g(x)=0$,即投影到海拔为0的平面上的话必须与图中红色曲线一致。

430fda3a1e81943f.png

显然,如果我们找到了一个最高点,必然有最高点所在的等高线$f(x,y)=d_1$与约束曲线$g(x)=0$是相切的。否则,我必然还可以沿着红色的约束曲线继续走,找到一个更高的点(例如:图中红色曲线与登高线$f(x,y)=d_2$相交)。用数学语言描述相切便意味着,在极值点,有:$$\nabla f(x) = \lambda *\nabla g(x)$$,即两个函数在极值点的梯度向量是平行的。

这个时候我们引入拉格朗日函数:$L(x, \lambda) = f(x) + \lambda g(x)$, 其中,$\lambda$就是拉格朗日乘子,为一个未知常数。 在求该函数关于$x,\lambda$极值问题时有:

$$\begin{array}{I}{1}^{o}\quad \nabla_x L(x,\lambda) = \nabla f(x) - \lambda *\nabla g(x)=0 \ 2^{o} \quad \nabla_{\lambda}L(x,\lambda) = g(x)=0\end{array} \qquad (2)$$

这意味着: 无约束条件下最小化拉格朗日函数$L(x,\lambda)$与有约束条件$g(x)=0$下原目标函数$f(x)$最小化的问题是一致的。求出令拉格朗日函数$L(x,\lambda)$最小的$(x,\lambda)$的值,便解出了原优化问题$(1)$的解,即我们将原优化问题$(1)$转换成了优化问题$(2)$:

$$\mathop{\min}\limits_{x, \lambda}L(x, \lambda) = f(x)+\lambda g(x) \qquad(3)$$

只要解除了$(2)$中线性方程组的解,那么便能够得到原目标函数的极值了。

不等式约束条件下的最优化问题

等式约束下的最优化的问题只是热热身,真正麻烦却也重要的,是不等式约束下的最优化问题。考虑将$(1)$中的问题进行推广,对最优化问题加上不等式约束:

$$\begin{array} {I}\mathop {\min }\limits_x \quad f(x) \ s.t.\quad h(x) = 0\ \qquad    g(x) \le 0\end{array} \quad\quad (4)$$

仍然考虑向量$x$为二维空间中的点的场景,图中阴影部分为$g(x)<0$区域,椭圆线为"盆地"的登高线, 不等式约束意味着我们只能在阴影区域找"盆地"的最低点。此时可能存在两种情况:

  1. “盆地“的中心在阴影部分区域,此时我们可以不用理会约束条件,直接求$f(x)$的极小值就行;
  2. “盆地”的中心在阴影部分外面,此时在我们所能找到的极值点,必然有$g(x)=0$曲线与极值点的登高线相切,否则必然能够往阴影区域继续找到一个海拔更低的点。并且该极小值点关于约束函数的梯度$\nabla g(x)$与关于目标函数的梯度$\nabla f(x)$方向必定是相反的(不相反却相切的情况,只能是第一种,但那种情况的切点并不是极小值) 。

5942468433a34.png

总结上面的情况,给出不等式约束条件下的库恩-塔克条件为:

$$相切要么相切要么极大值与无关\begin{array}{I}1^{o}\nabla_x L(x) = \nabla f(x) + \lambda\nabla g(x) +u\nabla h(x) = 0 \quad...相切\ 2^{o} \nabla_u L(x) = h(x) = 0 \ 3^{o} \nabla_ \lambda L(x) = g(x) \le 0 \ 4^{o}\lambda \ge0 \ 5^{o}u*g(x) = 0 \quad....要么相切g(x)=0,要么极大值与g(x)无关,\lambda=0\end{array}$$

对偶问题

转载于:https://www.cnblogs.com/pingzeng/p/7019221.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
东南亚位于我国倡导推进的“一带一路”海陆交汇地带,作为当今全球发展最为迅速的地区之一,近年来区域内生产总值实现了显著且稳定的增长。根据东盟主要经济体公布的最新数据,印度尼西亚2023年国内生产总值(GDP)增长5.05%;越南2023年经济增长5.05%;马来西亚2023年经济增速为3.7%;泰国2023年经济增长1.9%;新加坡2023年经济增长1.1%;柬埔寨2023年经济增速预计为5.6%。 东盟国家在“一带一路”沿线国家中的总体GDP经济规模、贸易总额与国外直接投资均为最大,因此有着举足轻重的地位和作用。当前,东盟与中国已互相成为双方最大的交易伙伴。中国-东盟贸易总额已从2013年的443亿元增长至 2023年合计超逾6.4万亿元,占中国外贸总值的15.4%。在过去20余年中,东盟国家不断在全球多变的格局里面临挑战并寻求机遇。2023东盟国家主要经济体受到国内消费、国外投资、货币政策、旅游业复苏、和大宗商品出口价企稳等方面的提振,经济显现出稳步增长态势和强韧性的潜能。 本调研报告旨在深度挖掘东南亚市场的增长潜力与发展机会,分析东南亚市场竞争态势、销售模式、客户偏好、整体市场营商环境,为国内企业出海开展业务提供客观参考意见。 本文核心内容: 市场空间:全球行业市场空间、东南亚市场发展空间。 竞争态势:全球份额,东南亚市场企业份额。 销售模式:东南亚市场销售模式、本地代理商 客户情况:东南亚本地客户及偏好分析 营商环境:东南亚营商环境分析 本文纳入的企业包括国外及印尼本土企业,以及相关上下游企业等,部分名单 QYResearch是全球知名的大型咨询公司,行业涵盖各高科技行业产业链细分市场,横跨如半导体产业链(半导体设备及零部件、半导体材料、集成电路、制造、封测、分立器件、传感器、光电器件)、光伏产业链(设备、硅料/硅片、电池片、组件、辅料支架、逆变器、电站终端)、新能源汽车产业链(动力电池及材料、电驱电控、汽车半导体/电子、整车、充电桩)、通信产业链(通信系统设备、终端设备、电子元器件、射频前端、光模块、4G/5G/6G、宽带、IoT、数字经济、AI)、先进材料产业链(金属材料、高分子材料、陶瓷材料、纳米材料等)、机械制造产业链(数控机床、工程机械、电气机械、3C自动化、工业机器人、激光、工控、无人机)、食品药品、医疗器械、农业等。邮箱:market@qyresearch.com

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值