拉格朗日乘数法证明

UTF8gbsn

介绍

现在我们来介绍下拉格朗日乘数法.首先提出问题. 假如我们有一个目标函数
f ( x ) f(\mathbf{x}) f(x) 约束条件为 g ( x ) = 0 g(\mathbf{x})=0 g(x)=0

拉格朗日乘数法的流程是写出目标函数
L ( x , λ ) = f ( x ) − λ g ( x ) L(\mathbf{x}, \lambda)=f(\mathbf{x})-\lambda g(\mathbf{x}) L(x,λ)=f(x)λg(x)
并求出稳定点

{ ∇ f ( x ) = λ ∇ g ( x ) g ( x ) = 0 \left\{ \begin{aligned} \nabla f(\mathbf{x})&=\lambda \nabla g(\mathbf{x})\\ g(\mathbf{x})&=0 \end{aligned} \right. {f(x)g(x)=λg(x)=0

通过计算稳定点中的极值来求原函数 f ( x ) f(\mathbf{x}) f(x)在约束条件 g ( x ) = 0 g(\mathbf{x})=0 g(x)=0下的极值.

几何proof

从几何的角度来说,
函数 f ( x ) f(\mathbf{x}) f(x)的等高线和 g ( x ) = 0 g(\mathbf{x})=0 g(x)=0在极值点应该相等.
因为约束条件使得函数曲线相切.

在这里插入图片描述

Analytic proof

假如 P P P点是 f ( x ) f(\mathbf{x}) f(x)在约束条件 g ( x ) g(\mathbf{x}) g(x)下的极值点.
另外假设一个参数方程 r ( t ) = ( x 1 ( t ) , x 2 ( t ) , ⋯   , x n ( t ) ) r(t)=(x_1(t), x_2(t), \cdots, x_n(t)) r(t)=(x1(t),x2(t),,xn(t)), 是一个曲线,
它在约束条件的表面. 切 r ( 0 ) = P r(0)=P r(0)=P点.
另外假设 h ( t ) = f ( x 1 ( t ) , x 2 ( t ) , ⋯   , x n ( t ) ) h(t)=f(x_1(t), x_2(t), \cdots, x_n(t)) h(t)=f(x1(t),x2(t),,xn(t)).于是我们可以得出下面的等式

h ′ ( t ) = ∇ f ( x ) ∣ r ( t ) ⋅ r ′ ( t ) h^{'}(t) = \nabla f(x)|_{r(t)} \cdot r^{'}(t) h(t)=f(x)r(t)r(t)

又因为 P P P点为极值点, 可知.

h ′ ( 0 ) = ∇ f ∣ P ⋅ r ′ ( 0 ) = 0 h^{'}(0)= \nabla f |_{P}\cdot r^{'}(0)=0 h(0)=fPr(0)=0

可见 ∇ f ∣ P \nabla f|_{P} fP在点P处垂直于 r ( t ) r(t) r(t). 而 r ( t ) r(t) r(t)是约束面上的任意曲线.
所以可见 ∇ f ∣ P \nabla f|_{P} fP在点P处垂直于月书面 g ( x ) = 0 g(\mathbf{x})=0 g(x)=0.
于是我们可以得 ∇ f ∣ P = λ ∇ g P \nabla f|_{P}=\lambda \nabla g_{P} fP=λgP

于是这就是拉格朗日乘数法的由来.

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
根据离散信道的定义,设输入字母集合为X,输出字母集合为Y,离散信道关系为Y = f(X),其中f为一个已知的函数关系。对于一个离散信道,其信道容量C定义为: C = max[I(X;Y)] 其中I(X;Y)为输入随机变量X和输出随机变量Y之间的互信息。达到准对称离散信道的信道容量最佳输入分布是等概率分布,即当输入随机变量X服从等概率分布时,信道容量取到最大值。 证明如下: 设X为输入随机变量,取值范围为{x1, x2, …, xn},P(X=xi)=pi,Y为输出随机变量,取值范围为{y1, y2, …, ym},P(Y=yj)=qj,对于给定的输入值xi,其对应的输出值为y=f(xi),则有: P(Y=yj|X=xi) = qj/j ∑k=1qk|fk(xi)=yj 其中∑k=1qk|fk(xi)=yj表示在所有可能的输出yj中,f(xi)等于yj的概率和。 将上式带入I(X;Y)的定义中可得: I(X;Y) = H(Y) – H(Y|X) 其中H(Y)为输出随机变量Y的熵,H(Y|X)为已知输入随机变量X时,输出随机变量Y的条件熵。由于对于离散信道,输出随机变量的熵是一定的,因此我们可以将I(X;Y)的表达式简化为: I(X;Y) = H(Y) – H(Y|X) = log2(m) – ∑i=1nP(xi)∑j=1m P(Y=yj|X=xi)log2P(Y=yj|X=xi) 对于一个离散信道而言,其最大的信道容量C,是指当输入随机变量服从某个概率分布时,使得I(X;Y)取到最大值时,此时I(X;Y)=C。 使用拉格朗日乘数,我们将I(X;Y)的优化问题转化为以下形式: max F(p) = ∑i=1n pi log2(qi) s.t. ∑pi = 1, pi ≥ 0 其中qi = ∑j=1m P(Y=yj|X=xi),是输入值xi对应的输出概率分布。 通过求导数可得,当pi=q1=m-1/n 时,F(p)取到全局最大值,此时I(X;Y)也取到最大值C. 因此,当输入随机变量X服从等概率分布时,信道容量取到最大值,即等概率分布是达到准对称离散信道信道容量最佳输入分布。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值