1.直接插入排序:将需要排序的列表分为已排序和未排序部分,依次将未排序部分的数字与已排序部分进行比较,找到比自己小的数字时停止,并插入到该数字后一位
def insertSort(L):
lenth = len(L)
for i in range(1, lenth):
if L[i] < L[i-1]:
j = i-1
tmp = L.pop(i)
while tmp < L[j]:
j = j-1
L.insert(j+1, tmp)
return L
2.希尔排序:
第一次排序:gap = 5(10/2),相距5的数字为一组,一共分为五组,分别进行插入排序
第二次排序:gap = 2(5/2),相距为2的数字为一组,一共分为2组,分别进行插入排序
第三次排序:gap = 1(2/1),只有一组,进行插入排序后,得到最后答案
def shellSort(L): lenth = len(L) gap = lenth/2 while gap >= 1: for i in range(gap, lenth): while i >= gap and L[i-gap] > L[i]: L[i], L[i-gap] = L[i-gap], L[i] i = i-gap gap = gap/2 return L
3.选择排序-简单选择排序
在要排序的一组数中,选出最小(或者最大)的一个数与第1个位置的数交换;然后在剩下的数当中再找最小(或者最大)的与第2个位置的数交换,依次类推,直到第n-1个元素(倒数第二个数)和第n个元素(最后一个数)比较为止。
第一趟,从n 个记录中找出关键码最小的记录与第一个记录交换;
第二趟,从第二个记录开始的n-1 个记录中再选出关键码最小的记录与第二个记录交换;
以此类推.....
第i 趟,则从第i 个记录开始的n-i+1 个记录中选出关键码最小的记录与第i 个记录交换,
直到整个序列按关键码有序。
#! coding: utf-8 def selectSort(L): lenth = len(L) for i in range(lenth - 1): mx_idx = i for k in range(i, lenth): if L[k] > L[mx_idx]: mx_idx = k L[i], L[mx_idx] = L[mx_idx], L[i] return L if __name__=="__main__": L = [3,1,5,7,2,4,9,6] print selectSort(L)
优化:双向选择,同时选择最大值和最小值,循环少一半
#! coding: utf-8 def selectSort(L): lenth = len(L) for i in range((lenth - 1)/2): #import pdb;pdb.set_trace() mx_idx = i mn_idx = i for k in range(i, lenth - i): if L[k] > L[mx_idx]: mx_idx = k if L[k] < L[mn_idx]: mn_idx = k #import pdb;pdb.set_trace() L[i], L[mx_idx] = L[mx_idx], L[i] L[lenth - i -1], L[mn_idx] = L[mn_idx], L[lenth - i - 1] return L if __name__=="__main__": L = [3,1,5,7,2,4,9,6] print selectSort(L)
4.堆排序
堆排序是一种树形选择排序,是对直接选择排序的有效改进。
基本思想:
堆的定义如下:具有n个元素的序列(k1,k2,...,kn),当且仅当满足
时称之为堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最小项(小顶堆)。
若以一维数组存储一个堆,则堆对应一棵完全二叉树,且所有非叶结点的值均不大于(或不小于)其子女的值,根结点(堆顶元素)的值是最小(或最大)的。如:
(a)大顶堆序列:(96, 83,27,38,11,09)
(b) 小顶堆序列:(12,36,24,85,47,30,53,91)
初始时把要排序的n个数的序列看作是一棵顺序存储的二叉树(一维数组存储二叉树),调整它们的存储序,使之成为一个堆,将堆顶元素输出,得到n 个元素中最小(或最大)的元素,这时堆的根节点的数最小(或者最大)。然后对前面(n-1)个元素重新调整使之成为堆,输出堆顶元素,得到n 个元素中次小(或次大)的元素。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。称这个过程为堆排序。
因此,实现堆排序需解决两个问题:
1. 如何将n 个待排序的数建成堆;
2. 输出堆顶元素后,怎样调整剩余n-1 个元素,使其成为一个新堆。
首先讨论第二个问题:输出堆顶元素后,对剩余n-1元素重新建成堆的调整过程。
调整小顶堆的方法:
1)设有m 个元素的堆,输出堆顶元素后,剩下m-1 个元素。将堆底元素送入堆顶((最后一个元素与堆顶进行交换),堆被破坏,其原因仅是根结点不满足堆的性质。
2)将根结点与左、右子树中较小元素的进行交换。
3)若与左子树交换:如果左子树堆被破坏,即左子树的根结点不满足堆的性质,则重复方法 (2).
4)若与右子树交换,如果右子树堆被破坏,即右子树的根结点不满足堆的性质。则重复方法 (2).
5)继续对不满足堆性质的子树进行上述交换操作,直到叶子结点,堆被建成。
称这个自根结点到叶子结点的调整过程为筛选。如图:
再讨论对n 个元素初始建堆的过程。
建堆方法:对初始序列建堆的过程,就是一个反复进行筛选的过程。
1)n 个结点的完全二叉树,则最后一个结点是第个结点的子树。
2)筛选从第个结点为根的子树开始,该子树成为堆。
3)之后向前依次对各结点为根的子树进行筛选,使之成为堆,直到根结点。
如图建堆初始过程:无序序列:(49,38,65,97,76,13,27,49)
算法的实现:
从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。
#! coding: utf-8 def heapParse(L, s, lenth): import pdb;pdb.set_trace() tmp = L[s] child = s * 2 + 1 while child < lenth: if child + 1 < lenth and L[child] < L[child + 1]: child += 1 if L[s] < L[child]: L[s] = L[child] s = child child = s * 2 + 1 else: break L[s] = tmp print "%s: %s" % (lenth, L) def heapBuild(L, lenth): for i in range((lenth - 1)/2, -1, -1): heapParse(L, i, lenth) def heapSort(L, lenth): heapBuild(L, lenth) for x in range(lenth - 1, 0, -1): L[0], L[x] = L[x], L[0] heapParse(L, 0, x) if __name__ == "__main__": L = [3,1,5,7,2,4,9,6,10,8] heapSort(L, len(L)) print L
分析:
设树深度为k,。从根到叶的筛选,元素比较次数至多2(k-1)次,交换记录至多k 次。所以,在建好堆后,排序过程中的筛选次数不超过下式:
而建堆时的比较次数不超过4n 次,因此堆排序最坏情况下,时间复杂度也为:O(nlogn )。