零知识证明 | 4.如何验证多项式盲计算的值?

这篇文章正式介绍一下Bob如何验证Alice发过来的E(P(s))的值是否正确。实际上,我们想要实现2个目的:

  • 双盲:Alice不知道s,Bob也不知道P(X)
  • 可验证:Alice只有发送正确的E(P(s))的值,才会被Bob接受

要实现第2个目标,需要用到上一篇文章里介绍的α对和KCA的概念。

上一篇文章里的KCA只用到了一个α对,我们可以扩展一下,让Bob给Alice发送多个α对(使用同一个α):

(a_1,b_1),(a_2,b_2),…,(a_d,b_d)

Alice需要回复一个α对,根据之前介绍的方法,她可以从上面的α对中随机挑选一个(a_i,b_i),然后各自乘以一个系数:(a',b') = (c \cdot a_i, c \cdot b_i)。那么,除此之外,还有没有其他方法生成新的α对呢?答案是肯定的,我们可以通过"线性组合"来生成。

举个例子,随机选2个系数c_1,c_2,生成新的α对:(a',b') = (c_1 \cdot a_1 + c_2 \cdot a_2, c_1 \cdot b_1 + c_2 \cdot b_2)

我们来证明一下:

b' = c_1 \cdot b_1 + c_2 \cdot b_2 = c_1 \cdot \alpha \cdot a_1 + c_2 \cdot \alpha \cdot a_2 = \alpha \cdot (c_1 \cdot a_1 + c_2 \cdot a_2) = \alpha \cdot a'

可以发现,确实是一个α对。我们可以通过求和符号写出新α对的一般形式:

(a',b') = (\Sigma^d_{i=1}c_ia_i, \Sigma^d_{i=1}c_ib_i)

根据上面的分析,可以引出一个"d阶系数知识假设",简称d-KCA

假设G是一个有限循环群,g是它的一个生成元。Bob选取一个α和一个s,然后把下面这些α对发送给Alice:

(g,\alpha \cdot g), (s \cdot g, \alpha s \cdot g), …, (s^d \cdot g, \alpha s^d \cdot g)

如果Alice成功回复了一个新的α对,那么Alice一定持有一组系数c_0,c_1,…,c_d,使得a'=\Sigma^d_{i=1}c_is^i

可以发现,Bob发的这组α对不是随便给出来的,对应d次多项式的每一项。

有了d-KCA的保证,我们就可以来验证Alice给出的盲计算结果了:

  • 假设G是一个有限循环群,g是它的一个生成元

  • 选取同态隐藏函数E(x) = x \cdot g

  • Bob随机选择一个α和一个s,把生成的α对发送给Allice:

    (a_0,b_0) = (E(1),\alpha \cdot E(1))

    (a_1,b_1) = (E(s), \alpha \cdot E(s))

    … …

    (a_d,b_d) = (E(s^d), \alpha \cdot E(s^d))

  • Alice需要保守的秘密是P(X)的系数:P(X) = c_0 + c_1 \cdot s + … + c_d \cdot s^d

  • Alice计算新的α对:

    a' = P(s) \cdot g = c_0 \cdot g + c_1 \cdot s \cdot g + … + c_d \cdot s^d \cdot g)= c_0 \cdot a_0 + c_1 \cdot a_1 + … + c_d \cdot a_d = \Sigma^d_{i=0}c_i \cdot a_i

    b' = \alpha \cdot a' = \Sigma^d_{i=0}c_i \cdot \alpha \cdot a_i = \Sigma^d_{i=0}c_i \cdot b_i

    然后把(a',b')发送给Bob

  • Bob验证(a',b')是否是α对,如果是的话就接受该回复

经过这一过程,Bob就可以确认Alice确实知道这组系数了(根据d-KCA)。因此,我们把上一篇文章中的图改一下,让Alice知道的2个秘密合二为一,就可以得到下面这张图了:

最终的效果是:在Bob不知道P(X)中的系数,Alice也不知道α跟s的情况下,确认了Alice的确知道这组多项式系数。

还是举个简单的实例结束本篇文章,假设g=3, d=2

Bob随机选择一组系数s=2, \alpha=4,然后把3个α对发送给Alice:

(a_0,b_0) = (E(1), \alpha \cdot E(1)) = (3, 4 \cdot 3|_{mod7}) = (3, 5)

(a_1,b_1) = (E(s), \alpha \cdot E(s)) = (2 \cdot 3|_{mod7}, 4 \cdot 2 \cdot 3|_{mod7}) = (6, 3)

(a_2,b_2) = (E(s^2), \alpha \cdot E(s^2)) = (2^2 \cdot 3|_{mod7}, 3 \cdot 2^2 \cdot 4|_{mod7}) = (5, 6)

假设Alice持有的多项式为P(X) = 1 + 2 \cdot X + 3 \cdot X^2,在收到Bob的α对之后,计算新的α对:

a' = \Sigma^2_{i=0}c_i \cdot a_i = 1 \cdot a_0 + 2 \cdot a_1 + 3 \cdot a_2 = 1 \cdot 3 + 2 \cdot 6 + 3 \cdot 5|_{mod7} = 30|_{mod7} = 2

b' = \Sigma^2_{i=0}c_i \cdot b_i = 1 \cdot b_0 + 2 \cdot b_1 + 3 \cdot b_2 = 1 \cdot 5 + 2 \cdot 3 + 3 \cdot 6|_{mod7} = 29|_{mod7} = 1

然后把(a',b') = (2,1)发送给Bob。

Bob接收到Alice的回复之后,验证其是否为α对:

\alpha \cdot a' = 4 \cdot 2|_{mod7} = 8|_{mod7} = 1 = b'

验证成功!至此,Bob确信Alice确实知道P(X)的这组系数。

转载于:https://juejin.im/post/5cdcb392f265da037516c6cb

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值