变量集中策略

前言

高中数学中的变量集中思想使用频次非常高,也非常普遍,所以要好好学习掌握,并加以深刻体会。

相关概念

什么是变量集中策略?有什么优越性?这是我们急需要深入了解的知识。

变量集中策略,从字面的意思理解,是把散布在函数各处的的变量尽可能地统一到一处,把各种各样的不一样的变量尽可能地统一成一个变量,这样变量的个数减少了,出现变量的地方减少了,那么我们要处理的问题不就简单了吗!

引例如\(f(x)=\cfrac{x+2}{x+1}(x\in[1,3])\)

如果我们单独看这个分式函数,在分子和分母上都有变量,当他们同时变大的时候,整体的结果到底怎么变化,我们还真不好说,但是如果我们施行了化为部分分式的变换后得到\(f(x)=\cfrac{x+2}{x+1}=1+\cfrac{1}{x+1}\),那么就能很容易的判断\(x\in [1,3]\)时,函数\(f(x)\)单调递减。原来在分子和分母上都有变量,变换后变量只出现在部分分式的分母位置上,这样就好判断多了,这里用到的就是数学中的变量集中策略和方法。

相关素材

1、关于\(\sin\alpha、cos\alpha\)的一次或二次齐次式,

  • 比如:\(\cfrac{a\sin\theta+b\cos\theta}{c\sin\theta+d\cos\theta}\xlongequal[分子分母是sin\theta,cos\theta的一次齐次式]{分子分母同除以cos\theta}\cfrac{a\tan\theta+b}{c\tan\theta+d}\) (\(a,b,c,d\)为常数);

小结:实现了二元\(sin\theta、cos\theta\)向一元\(tan\theta\)的转化;

  • 比如:\(\cfrac{\sin2\theta-\cos^2\theta}{1+\sin^2\theta}=\cfrac{2sin\theta cos\theta-cos^2\theta}{2sin^2\theta+cos^2\theta}\xlongequal[分子分母是sin\theta,cos\theta的二一次齐次式]{分子分母同除以cos^2\theta}\cfrac{2tan\theta-1}{2tan^2\theta+1}\)

小结:实现了二元\(sin\theta、cos\theta\)向一元\(tan\theta\)的转化;

  • 再比如:\(a\sin2\theta+b\cos2\theta=\cfrac{a\sin2\theta+b\cos2\theta}{sin^2\theta+cos^2\theta}=\cfrac{a\tan\theta+b-b\tan^2\theta}{tan^2\theta+1}\)

  • 留作思考:\(\sin2\theta\)\(\cos2\theta\)\(1+\sin2\theta\)\(2-\cos2\theta\)\(3\sin2\theta-2\cos2\theta\) 等等

典例剖析

例01【函数素材】已知函数\(f(x)=\begin{cases}x+1&0\leq x<1\\2^x-\cfrac{1}{2}&x>1\end{cases}\),若\(a>b\ge 0\),恒有\(f(a)=f(b)\),求\(b\cdot f(a)\)的取值范围。

分析:先做出分段函数的图像如图所示,

992978-20171019155207131-1820330941.png

由图像可知\(0\leq b<1\leq a\),此时\(f(a)=2^a-\cfrac{1}{2}\)\(f(b)=b+1\),如果不做变换直接求\(b\cdot f(a)\)的取值范围,会出现二元函数,

但是若利用\(f(a)=f(b)\),则\(b\cdot f(a)=b\cdot f(b)=b(b+1)\),就是一元函数,符合我们的求解习惯,

此时\(b\cdot f(a)=b\cdot f(b)=b(b+1)\)\(x\in [\cfrac{1}{2},1)\),就成了一元二次函数在限定区间上的值域问题了,

\(g(b)=b(b+1)=(b+\cfrac{1}{2})^2-\cfrac{1}{4}\),在区间\(x\in [\cfrac{1}{2},1)\)上单调递增,

\(g(\cfrac{1}{2})\leq g(b)<g(1)\),即\(b\cdot f(a)\)的取值范围是\([\cfrac{3}{4},2)\)

例02【均值不等式】

\(h(x)=\cfrac{x^2-4x+5}{x-2}=\cfrac{(x-2)^2+1}{x-2}=(x-2)+\cfrac{1}{x-2}\xrightarrow{x-2=t}t+\cfrac{1}{t}\)

例03【二元函数到一元函数】

比如: 例011

比如:\(\cfrac{x+2\sqrt{2xy}}{x+y}\xlongequal[再换元,令\frac{y}{x}=t^2]{分子分母同除以x}\cfrac{1+2\sqrt{2}t}{1+t^2}\)

比如:\(\cfrac{xy}{3x^2+xy-2y^2}=\cfrac{\cfrac{xy}{x^2}}{\cfrac{3x^2+xy-2y^2}{x^2}}=\cfrac{\cfrac{y}{x}}{3+\cfrac{y}{x}-2(\cfrac{y}{x})^2}=\cfrac{t}{3+t-2t^2}=\cfrac{1}{\cfrac{3}{t}+1-2t}(\cfrac{y}{x}=t,t为斜率)\)

例04【2018届凤翔中学高三文科冲刺模拟第10套第12题】

已知函数\(f(x)=ln\cfrac{x}{2}+\cfrac{1}{2}\)\(g(x)=e^{x-2}\),若\(g(m)=f(n)\)成立, 则\(n-m\)的最小值为【】

A.\(1-ln2\hspace{2cm}\) B.\(ln2\hspace{2cm}\) C.\(2\sqrt{e}-3\hspace{2cm}\) D.\(e^2-3\)

分析:不妨设\(g(m)=f(n)=t\),则\(e^{m-2}=ln\cfrac{n}{2}+\cfrac{1}{2}=t(t>0)\)

(编者注:此处引入第三方变量\(t\),可以将\(m、n\)用含有\(t\)的表达式来刻画,则二元函数就此转化为了一元函数,我们就可以用导数求其最值了)

\(m-2=lnt\)\(m=2+lnt\)\(ln\cfrac{n}{2}=t-\cfrac{1}{2}\),则\(n=2e^{t-\frac{1}{2}}\)

\(n-m=2e^{t-\frac{1}{2}}-2-lnt(t>0)\)

\(h(t)=2e^{t-\frac{1}{2}}-2-lnt(t>0)\)\(h'(t)=2e^{t-\frac{1}{2}}-\cfrac{1}{t}\),(增+增=增)

易知\(h'(t)\)\((0,+\infty)\)上单调递增,且\(h(\cfrac{1}{2})=0\)

\(t>\cfrac{1}{2}\)时,\(h'(t)>0\),当\(0<t<\cfrac{1}{2}\)时,\(h'(t)<0\)

即当\(t=\cfrac{1}{2}\)时,\(h(t)\)取得极小值也是最小值,\(h(t)_{min}=h(\cfrac{1}{2})=2e^{\frac{1}{2}-\frac{1}{2}}-2-ln\cfrac{1}{2}=ln2\),故选B.

例05【2016第三次全国大联考第16题】

若不等式\(2x^2+(1-a)y^2\ge (3+a)xy(x>0,y>0)\)恒成立,求实数\(a\)的最大值。

法1:分离参数+构造函数,由题目可得\(a\leq \cfrac{2x^2+y^2-3xy}{y^2+xy}\),令\(f(x,y)= \cfrac{2x^2+y^2-3xy}{y^2+xy}\xlongequal[关于x,y的二次齐次式]{分子分母同除以y^2}\cfrac{2(\cfrac{x}{y})^2-3\cfrac{x}{y}+1}{1+\cfrac{x}{y}}\\\xlongequal[令\cfrac{x}{y}=t>0]{二元变一元}g(t)=\cfrac{2t^2-3t+1}{t+1}=2(t+1)+\cfrac{6}{t+1}-7\ge 2\sqrt{12}-7=4\sqrt{3}-7\)

当且仅当\(t=\sqrt{3}-1\)时取到等号。故有\(a\leq 4\sqrt{3}-7\),所以\(a_{max}=4\sqrt{3}-7\)

法2:二元变一元,两边同除以\(y\),得到\(2(\cfrac{x}{y})^2-(a+3)(\cfrac{x}{y})+(1-a)\ge 0\),令\(\cfrac{x}{y}=t>0\),即\(2t^2-(a+3)t+(1-a)\ge 0\)对任意\(t>0\)恒成立,

\(g(t)=2t^2-(a+3)t+(1-a)\) ,则分以下两种情形:

\(1^。\) \(\Delta=a^2+14a+1\leq 0\),解得\(-4\sqrt{3}-7\leq a \leq 4\sqrt{3}-7\)

\(2^。\) \(\begin{cases}\Delta >0\\\cfrac{a+3}{2\cdot2}<0\\g(1)=2-a-3+1-a\ge 0 \end{cases}\),解得\(a<-4\sqrt{3}-7\)

综上可知,\(a\leq 4\sqrt{3}-7\),故\(a_{max}=4\sqrt{3}-7\)

例07【使用在解方程中:二元方程变为一元方程】

\(a^2-3ab+2b^2=0\Rightarrow(\cfrac{a}{b})^2-3(\cfrac{a}{b})+2=0\)

例08【三角变换中的三个角到一个角】

\(\begin{align*}\cfrac{c\cdot cos(30^{\circ}-A)}{b+a}&=\cfrac{sinC\cdot cos(30^{\circ}-A)}{sinB+sinA}\\&=\cfrac{sinC\cdot cos(30^{\circ}-A)}{sin(\cfrac{\pi}{3}-A)+sinA}\\&=\cfrac{\cfrac{\sqrt{3}}{2}\cdot(\cfrac{\sqrt{3}}{2}cosA+\cfrac{1}{2}sinA)}{\cfrac{\sqrt{3}}{2}cosA+\cfrac{1}{2}sinA}\\&=\cfrac{\sqrt{3}}{2}\end{align*}\).

例09【2017宝鸡中学高三理科第一次月考第10题】
已知函数\(f(x)=\cfrac{2sinxcosx}{1+sinx+cosx}\)\(x\in(0,\cfrac{\pi}{2}]\)的最大值为M,最小值为N,则M-N=?

分析:令\(sinx+cosx=t\) ,由于\(x\in(0,\cfrac{\pi}{2}]\),则\(t=sinx+cosx=\sqrt{2}sin(x+\cfrac{\pi}{4})\in [1,\sqrt{2}]\),则\(2sinxcosx=t^2-1\),故\(f(x)=\cfrac{t^2-1}{t+1}=g(t)=t-1\),故\(f(x)_{max}=M=\sqrt{2}-1\)\(f(x)_{min}=N=0\);即M-N=\(\sqrt{2}-1\)

例10【不等式[证明]】(http://www.cnblogs.com/wanghai0666/p/6811070.html)

比如:已知\(x_1>x_2>0\),证明\(ln(\cfrac{x_1}{x_2})>2\cfrac{x_1-x_2}{x_1+x_2}\).

分析:令\(\cfrac{x_1}{x_2}=t\),则\(t>1\)\(ln(\cfrac{x_1}{x_2})>2\cfrac{x_1-x_2}{x_1+x_2}\)等价于\(lnt>2\cfrac{t-1}{t+1}\);然后作差构造函数\(g(t)=lnt-2\cfrac{t-1}{t+1}\),想办法证明\(g(t)>0\)恒成立即可。

例03【不等式求解中】

已知\(a,b\in R^{+},a+b-ab+3=0\),1、求\(ab\)的范围;2、求\(a+b\)范围

例12【线性规划中】

\(z=\cfrac{3x+4y+10}{x+2}=\cfrac{3(x+2)+4y+4}{x+2}=3+4\times\cfrac{y+1}{x+2}\)\(\cfrac{y-(-1)}{x-(-2)}为斜率\)

\(z=\cfrac{x^2+y^2}{xy}=\cfrac{y}{x}+\cfrac{x}{y}=k+\cfrac{1}{k}(\cfrac{y}{x}=k)\)

例13【参数方程中】

\(C:x^2+y^2=4\)上的任意点\(P\),当点\(P(x,y)\)表达的时候,是二元的,但是换成参数方程时,点\(P(2cos\theta,2sin\theta)\)表达时,就是一元函数了;

椭圆\(C:\cfrac{x^2}{9}+\cfrac{y^2}{4}=1\)上的任意点\(P\),当点\(P(x,y)\)表达的时候,是二元的,但是换成参数方程时,点\(P(3cos\theta,2sin\theta)\)表达时,就是一元函数了;

例14【比例中、等幂中】

  • 已知\(a:b:c=2:3:4\),引入非零因子\(k\),则可以这样表达,\(a=2k,b=3k,c=4k\),可以看成\(a,b,c\)都是\(k\)的一元函数了。

  • \(e^{m-2}=ln\cfrac{n}{2}+\cfrac{1}{2}=t(t>0)\)

(编者注:此处引入第三方变量\(t\),可以将\(m、n\)用含有\(t\)的表达式来刻画,则二元函数就此转化为了一元函数,我们就可以用导数求其最值了)

\(m-2=lnt\)\(m=2+lnt\)\(ln\cfrac{n}{2}=t-\cfrac{1}{2}\),则\(n=2e^{t-\frac{1}{2}}\)

\(n-m=2e^{t-\frac{1}{2}}-2-lnt(t>0)\)

例15【2017全国卷1理科第11题】

已知\(2^x=3^y=5^z\),比较\(2x、3y、5z\)的大小;

分析:令\(2^x=3^y=5^z=k\),则\(x=log_2k=\cfrac{lgk}{lg2}\)\(y=log_3k=\cfrac{lgk}{lg3}\)\(z=log_5k=\cfrac{lgk}{lg5}\)

\(2x=\cfrac{2lgk}{lg2}=\cfrac{lgk}{\cfrac{1}{2}lg2}=\cfrac{lgk}{lg\sqrt{2}}\)\(3y=\cfrac{3lgk}{lg3}=\cfrac{lgk}{\cfrac{1}{3}lg3}=\cfrac{lgk}{lg\sqrt[3]{3}}\)\(5z=\cfrac{5lgk}{lg5}=\cfrac{lgk}{\cfrac{1}{5}lg5}=\cfrac{lgk}{lg\sqrt[5]{5}}\)

接下来,法1:转化为只需要比较\(\sqrt[2]{2}\)\(\sqrt[3]{3}\)\(\sqrt[5]{5}\)三者的大小即可。

先比较\(\sqrt[2]{2}\)\(\sqrt[3]{3}\),给两个式子同时6次方,得到\((\sqrt[2]{2})^6=2^3=8\)\((\sqrt[3]{3})^6=3^2=9\),故\(\sqrt[2]{2}<\sqrt[3]{3}\),则\(\cfrac{lgk}{lg\sqrt[2]{2}}>\cfrac{lgk}{lg\sqrt[3]{3}}\),即得到\(2x>3y\)

再比较\(\sqrt[2]{2}\)\(\sqrt[5]{5}\),给两个式子同时10次方,得到\((\sqrt[2]{2})^{10}=2^5=32\)\((\sqrt[5]{5})^{10}=5^2=25\),故\(\sqrt[2]{2}>\sqrt[5]{5}\),则\(\cfrac{lgk}{lg\sqrt[2]{2}}<\cfrac{lgk}{lg\sqrt[3]{3}}\),即得到\(5z>2x\),综上得到\(3y<2x<5z\)

法2:作商法,\(\cfrac{2x}{3y}=\cfrac{2}{3}\cdot \cfrac{lg3}{lg2}=\cfrac{lg9}{lg8}=log_89>1\),故\(2x>3y\)

\(\cfrac{5z}{2x}=\cfrac{5}{2}\cdot \cfrac{lg2}{lg5}=\cfrac{lg2^5}{lg5^2}=log_{25}32>1\),故\(5z>2x\);故\(3y<2x<5z\)

例13【难点题目】

已知正实数\(x、y、z\)满足\(x^2-3xy+4y^2-z=0\),当\(\cfrac{xy}{z}\)取得最大值时,求\(\cfrac{2}{x}+\cfrac{1}{y}-\cfrac{2}{z}\)的最大值.

分析:\(z=x^2-3xy+4y^2\ge 2x\cdot 2y-3xy=xy\),当且仅当\(x=2y\)时取得等号;

\(\cfrac{1}{z}\leq \cfrac{1}{xy}\),当且仅当\(x=2y\)时取得等号;

\(\cfrac{xy}{z}\leq \cfrac{xy}{xy}=1\),即\(\cfrac{xy}{z}\)的最大值为\(1\),当且仅当\(x=2y\)时取得等号;

此时,\(z=x^2-3xy+4y^2=4y^2-3y\cdot 2y+4y^2=2y^2\)

\(\cfrac{2}{x}+\cfrac{1}{y}-\cfrac{2}{z}=\cfrac{2}{2y}+\cfrac{1}{y}-\cfrac{2}{2y^2}\)

\(=\cfrac{2}{y}-\cfrac{1}{y^2}=-(\cfrac{1}{y}-1)^2+1\leq 1\)

\(\cfrac{2}{x}+\cfrac{1}{y}-\cfrac{2}{z}\)的最大值为1.

此时,\(y=1,x=2,z=2\)

【点评】变量集中,三元变一元。

例14【2018河南郑州一模】若对于任意的正整数\(x\)\(y\)都有\((2x-\cfrac{y}{e})\cdot \cfrac{y}{x}\leq \cfrac{x}{me}\)成立,则实数\(m\)的取值范围是【】

$A.(\cfrac{1}{e},1)$ $B.(\cfrac{1}{e^2},1]$ $C.(\cfrac{1}{e^2},e]$ $D.(0,\cfrac{1}{e}]$

分析:先将给定的式子通分变形为\(\cfrac{2ex-y}{e}\cdot ln\cfrac{y}{x}\leq \cfrac{x}{me}\),再次变形为\((2e-\cfrac{y}{x})\cdot ln\cfrac{y}{x}\leq \cfrac{1}{m}\)

\(\cfrac{y}{x}=t>0\),则不等式变形为\((2e-t)\cdot lnt\leq \cfrac{1}{m}\),令\(h(t)=(2e-t)\cdot lnt\),则需要求\(h(t)_{max}\)

\(h'(x)=(-1)lnt+(2e-t)\cdot \cfrac{1}{t}=\cfrac{-t(lnt+1)+2e}{t}\),先用观察法或经验找到导函数的分子的零点\(t=e\)

\(t\in (0,e)\)时,\(h'(t)>0\)\(h(t)\)单调递增,当\(t\in (e,+\infty)\)时,\(h'(t)<0\)\(h(t)\)单调递减,

\(h(t)_{max}=h(e)=e\),即\(\cfrac{1}{m}\ge e\),解得\(0<m\leq \cfrac{1}{e}\);故选\(D\)

相关方法

尝试总结与变量集中策略相关的数学方法和数学变形。

  • 分式裂项,化为部分分式;

  • 同除;

  • 分母\(1=sin^2\theta+cos^2\theta\)的代换;

  • 配凑法;

  • 换元法,代数换元和三角换元;

  • 参数方程法;

转载于:https://www.cnblogs.com/wanghai0666/p/6875428.html

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于微信小程序的家政服务预约系统采用PHP语言和微信小程序技术,数据库采用Mysql,运行软件为微信开发者工具。本系统实现了管理员和客户、员工三个角色的功能。管理员的功能为客户管理、员工管理、家政服务管理、服务预约管理、员工风采管理、客户需求管理、接单管理等。客户的功能为查看家政服务进行预约和发布自己的需求以及管理预约信息和接单信息等。员工可以查看预约信息和进行接单。本系统实现了网上预约家政服务的流程化管理,可以帮助工作人员的管理工作和帮助客户查询家政服务的相关信息,改变了客户找家政服务的方式,提高了预约家政服务的效率。 本系统是针对网上预约家政服务开发的工作管理系统,包括到所有的工作内容。可以使网上预约家政服务的工作合理化和流程化。本系统包括手机端设计和电脑端设计,有界面和数据库。本系统的使用角色分为管理员和客户、员工三个身份。管理员可以管理系统里的所有信息。员工可以发布服务信息和查询客户的需求进行接单。客户可以发布需求和预约家政服务以及管理预约信息、接单信息。 本功能可以实现家政服务信息的查询和删除,管理员添加家政服务信息功能填写正确的信息就可以实现家政服务信息的添加,点击家政服务信息管理功能可以看到基于微信小程序的家政服务预约系统里所有家政服务的信息,在添加家政服务信息的界面里需要填写标题信息,当信息填写不正确就会造成家政服务信息添加失败。员工风采信息可以使客户更好的了解员工。员工风采信息管理的流程为,管理员点击员工风采信息管理功能,查看员工风采信息,点击员工风采信息添加功能,输入员工风采信息然后点击提交按钮就可以完成员工风采信息的添加。客户需求信息关系着客户的家政服务预约,管理员可以查询和修改客户需求信息,还可以查看客户需求的添加时间。接单信息属于本系统里的核心数据,管理员可以对接单的信息进行查询。本功能设计的目的可以使家政服务进行及时的安排。管理员可以查询员工信息,可以进行修改删除。 客户可以查看自己的预约和修改自己的资料并发布需求以及管理接单信息等。 在首页里可以看到管理员添加和管理的信息,客户可以在首页里进行家政服务的预约和公司介绍信息的了解。 员工可以查询客户需求进行接单以及管理家政服务信息和留言信息、收藏信息等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值